L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP
11 (2007) 068 [arXiv:0710.1060] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Polchinski and J. Sully, Wilson Loop Renormalization Group Flows, JHEP
10 (2011) 059 [arXiv:1104.5077] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Beccaria, S. Giombi and A. Tseytlin, Non-supersymmetric Wilson loop in
\( \mathcal{N}=4 \)
SYM and defect 1d CFT, JHEP
03 (2018) 131 [arXiv:1712.06874] [INSPIRE].
A.M. Polyakov and V.S. Rychkov, Gauge field strings duality and the loop equation, Nucl. Phys.
B 581 (2000) 116 [hep-th/0002106] [INSPIRE].
N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP
07 (2006) 024 [hep-th/0604124] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Sakaguchi and K. Yoshida, Holography of Non-relativistic String on AdS
5 × S
5, JHEP
02 (2008) 092 [arXiv:0712.4112] [INSPIRE].
N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP
06 (2011) 131 [arXiv:1105.5144] [INSPIRE].
ADS
Article
MATH
Google Scholar
D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP
06 (2012) 048 [arXiv:1202.4455] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Cooke, A. Dekel and N. Drukker, The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines, J. Phys.
A 50 (2017) 335401 [arXiv:1703.03812] [INSPIRE].
M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP
04 (2016) 091 [arXiv:1601.02883] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS
2
/CFT
1, Nucl. Phys.
B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].
M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop, JHEP
12 (2017) 055 [arXiv:1710.07325] [INSPIRE].
S. Giombi and S. Komatsu, Exact Correlators on the Wilson Loop in
\( \mathcal{N}=4 \)
SYM: Localization, Defect CFT and Integrability, JHEP
05 (2018) 109 [Erratum ibid.
11 (2018) 123] [arXiv:1802.05201] [INSPIRE].
M. Kim and N. Kiryu, Structure constants of operators on the Wilson loop from integrability, JHEP
11 (2017) 116 [arXiv:1706.02989] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Drukker, I. Shamir and C. Vergu, Defect multiplets of
\( \mathcal{N}=1 \)
supersymmetry in 4d, JHEP
01 (2018) 034 [arXiv:1711.03455] [INSPIRE].
D. Correa, M. Leoni and S. Luque, Spin chain integrability in non-supersymmetric Wilson loops, JHEP
12 (2018) 050 [arXiv:1810.04643] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP
10 (2018) 077 [arXiv:1806.01862] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Beccaria and A.A. Tseytlin, On non-supersymmetric generalizations of the Wilson-Maldacena loops in N = 4 SYM, Nucl. Phys.
B 934 (2018) 466 [arXiv:1804.02179] [INSPIRE].
L. Bianchi, M. Lemos and M. Meineri, Line Defects and Radiation in
\( \mathcal{N}=2 \)
Conformal Theories, Phys. Rev. Lett.
121 (2018) 141601 [arXiv:1805.04111] [INSPIRE].
S. Giombi and S. Komatsu, More Exact Results in the Wilson Loop Defect CFT: Bulk-Defect OPE, Nonplanar Corrections and Quantum Spectral Curve, J. Phys.
A 52 (2019) 125401 [arXiv:1811.02369] [INSPIRE].
N. Kiryu and S. Komatsu, Correlation Functions on the Half-BPS Wilson Loop: Perturbation and Hexagonalization, JHEP
02 (2019) 090 [arXiv:1812.04593] [INSPIRE].
ADS
Article
MATH
Google Scholar
D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D S-matrices, JHEP
02 (2019) 162 [arXiv:1803.10233] [INSPIRE].
A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, Quantum spectral curve and structure constants in
\( \mathcal{N}=4 \)
SYM: cusps in the ladder limit, JHEP
10 (2018) 060 [arXiv:1802.04237] [INSPIRE].
S. Samuel, Color Zitterbewegung, Nucl. Phys.
B 149 (1979) 517 [INSPIRE].
J. Ishida and A. Hosoya, Path Integral for a Color Spin and Path Ordered Phase Factor, Prog. Theor. Phys.
62 (1979) 544 [INSPIRE].
ADS
Article
Google Scholar
I. Ya. Arefeva, Quantum contour field equations, Phys. Lett.
93B (1980) 347 [INSPIRE].
J.-L. Gervais and A. Neveu, The Slope of the Leading Regge Trajectory in Quantum Chromodynamics, Nucl. Phys.
B 163 (1980) 189 [INSPIRE].
J. Gomis and F. Passerini, Holographic Wilson Loops, JHEP
08 (2006) 074 [hep-th/0604007] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Hoyos, A defect action for Wilson loops, JHEP
07 (2018) 045 [arXiv:1803.09809] [INSPIRE].
ADS
Article
MATH
Google Scholar
N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS
5 × S
5
: Semiclassical partition function, JHEP
04 (2000) 021 [hep-th/0001204] [INSPIRE].
A. Faraggi and L.A. Pando Zayas, The Spectrum of Excitations of Holographic Wilson Loops, JHEP
05 (2011) 018 [arXiv:1101.5145] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Fiol, B. Garolera and G. Torrents, Exact momentum fluctuations of an accelerated quark in N = 4 super Yang-Mills, JHEP
06 (2013) 011 [arXiv:1302.6991] [INSPIRE].
D. Carmi, L. Di Pietro and S. Komatsu, A Study of Quantum Field Theories in AdS at Finite Coupling, JHEP
01 (2019) 200 [arXiv:1810.04185] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.
B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys.
B 582 (2000) 155 [hep-th/0003055] [INSPIRE].
D. Medina-Rincon, A.A. Tseytlin and K. Zarembo, Precision matching of circular Wilson loops and strings in AdS
5 × S
5, JHEP
05 (2018) 199 [arXiv:1804.08925] [INSPIRE].
S. Elitzur, The Applicability of Perturbation Expansion to Two-dimensional Goldstone Systems, Nucl. Phys.
B 212 (1983) 501 [INSPIRE].
F. David, Cancellations of Infrared Divergences in the Two-dimensional Nonlinear σ-models, Commun. Math. Phys.
81 (1981) 149 [INSPIRE].
J.L. Miramontes and J.M. Sanchez de Santos, Are there infrared problems in the 2-d nonlinear
σ
-models?, Phys. Lett.
B 246 (1990) 399 [INSPIRE].
J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP
08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Dekel, Wilson Loops and Minimal Surfaces Beyond the Wavy Approximation, JHEP
03 (2015) 085 [arXiv:1501.04202] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
R. Ishizeki, M. Kruczenski and S. Ziama, Notes on Euclidean Wilson loops and Riemann Theta functions, Phys. Rev.
D 85 (2012) 106004 [arXiv:1104.3567] [INSPIRE].
F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].
J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.
D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys.
65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. de Boer, E. Llabrés, J.F. Pedraza and D. Vegh, Chaotic strings in AdS/CFT, Phys. Rev. Lett.
120 (2018) 201604 [arXiv:1709.01052] [INSPIRE].
ADS
Article
Google Scholar
S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of Quantum Gravity, JHEP
09 (2012) 133 [arXiv:1205.6805] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, in Strings, Branes and Extra Dimensions: TASI 2001: Proceedings, pp. 3-158, 2002, hep-th/0201253 [INSPIRE].
M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP
11 (2017) 193 [arXiv:1702.08471] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.A. Tseytlin, On semiclassical approximation and spinning string vertex operators in AdS
5 × S
5, Nucl. Phys.
B 664 (2003) 247 [hep-th/0304139] [INSPIRE].
I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP
10 (2009) 079 [arXiv:0907.0151] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP
10 (2012) 032 [arXiv:1112.4845] [INSPIRE].
ADS
Article
MATH
Google Scholar
E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys.
B 562 (1999) 353 [hep-th/9903196] [INSPIRE].
F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.
B 599 (2001) 459 [hep-th/0011040] [INSPIRE].
G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys.
B 665 (2003) 273 [hep-th/0212116] [INSPIRE].
S. Randjbar-Daemi, A. Salam and J.A. Strathdee, σ-Models and String Theories, Int. J. Mod. Phys.
A 2 (1987) 667 [INSPIRE].
A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett.
B 103 (1981) 207 [INSPIRE].
R.I. Nepomechie, Duality of the Polyakov N Point Amplitude, Phys. Rev.
D 25 (1982) 2706 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Quantum String Theory Effective Action, Nucl. Phys.
B 261 (1985) 1 [Erratum ibid.
B 269 (1986) 745] [INSPIRE].
B. Durhuus, H.B. Nielsen, P. Olesen and J.L. Petersen, Dual models as saddle point approximations to Polyakov’s quantized string, Nucl. Phys.
B 196 (1982) 498 [INSPIRE].
S.N. Solodukhin, Correlation functions of boundary field theory from bulk Green’s functions and phases in the boundary theory, Nucl. Phys.
B 539 (1999) 403 [hep-th/9806004] [INSPIRE].
A.A. Tseytlin, Graviton amplitudes, effective action and string generating functional on the disk, Int. J. Mod. Phys.
A 4 (1989) 3269 [INSPIRE].
S.P. de Alwis, The Dilaton Vertex in the Path Integral Formulation of Strings, Phys. Lett.
168B (1986) 59 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A.A. Tseytlin, Renormalization of String Loop Corrections on the Disk and the Annulus, Phys. Lett.
B 208 (1988) 228 [INSPIRE].