Skip to main content

Advertisement

SpringerLink
Fluxes in exceptional field theory and threebrane sigma-models
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 09 May 2019

Fluxes in exceptional field theory and threebrane sigma-models

  • Athanasios Chatzistavrakidis  ORCID: orcid.org/0000-0002-9326-98711,2,
  • Larisa Jonke1,2,
  • Dieter Lüst2,3 &
  • …
  • Richard J. Szabo4,5,6 

Journal of High Energy Physics volume 2019, Article number: 55 (2019) Cite this article

  • 254 Accesses

  • 7 Citations

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Starting from a higher Courant bracket associated to exceptional generalized geometry, we provide a systematic derivation of all types of fluxes and their Bianchi identities for four-dimensional compactifications of M-theory. We show that these fluxes may be understood as generalized Wess-Zumino terms in certain topological threebrane sigma-models of AKSZ-type, which relates them to the higher structure of a Lie algebroid up to homotopy. This includes geometric compactifications of M-theory with G-flux and on twisted tori, and also its compactifications with non-geometric Q- and R-fluxes in specific representations of the U-duality group SL(5) in exceptional field theory.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. E. Plauschinn, Non-geometric backgrounds in string theory, Phys. Rept. 798 (2019) 1 [arXiv:1811.11203] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. R.J. Szabo, Higher quantum geometry and non-geometric string theory, PoS(CORFU2017)151 [arXiv:1803.08861] [INSPIRE].

  4. C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP 03 (2015) 144 [arXiv:1412.0635] [INSPIRE].

  5. D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. P. du Bosque, F. Hassler, D. Lüst and E. Malek, A geometric formulation of exceptional field theory, JHEP 03 (2017) 004 [arXiv:1605.00385] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Günaydin, D. Lüst and E. Malek, Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions and missing momentum modes, JHEP 11 (2016) 027 [arXiv:1607.06474] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  8. V.G. Kupriyanov and R.J. Szabo, G 2 -structures and quantization of non-geometric M-theory backgrounds, JHEP 02 (2017) 099 [arXiv:1701.02574] [INSPIRE].

  9. D. Lüst, E. Malek and R.J. Szabo, Non-geometric Kaluza-Klein monopoles and magnetic duals of M-theory R-flux backgrounds, JHEP 10 (2017) 144 [arXiv:1705.09639] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D. Lüst, E. Malek and M. Syvari, Locally non-geometric fluxes and missing momenta in M-theory, JHEP 01 (2018) 050 [arXiv:1710.05919] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

  12. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

  13. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Y. Hagiwara, Nambu-Dirac manifolds, J. Phys. A 35 (2002) 1263.

  17. G. Bonelli and M. Zabzine, From current algebras for p-branes to topological M-theory, JHEP 09 (2005) 015 [hep-th/0507051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Zambon, L ∞ algebras and higher analogues of Dirac structures and Courant algebroids, J. Symplectic Geom. 10 (2012) 563 [arXiv:1003.1004] [INSPIRE].

  19. Y. Bi and Y. Sheng, On higher analogues of Courant algebroids, Sci. China Math. A 54 (2011) 437 [arXiv:1003.1350].

  20. P. Bouwknegt and B. Jurčo, AKSZ construction of topological open p-brane action and Nambu brackets, Rev. Math. Phys. 25 (2013) 1330004 [arXiv:1110.0134] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  21. T.J. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.

    Article  MathSciNet  MATH  Google Scholar 

  22. Z.-J. Liu, A. WEinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom. 45 (1997) 547 [dg-ga/9508013] [INSPIRE].

  23. N. Halmagyi, Non-geometric backgrounds and the first order string σ-model, arXiv:0906.2891 [INSPIRE].

  24. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Bianchi identities for non-geometric fluxes — From quasi-Poisson structures to Courant algebroids, Fortsch. Phys. 60 (2012) 1217 [arXiv:1205.1522] [INSPIRE].

  25. N. Ikeda, Chern-Simons gauge theory coupled with BF theory, Int. J. Mod. Phys. A 18 (2003) 2689 [hep-th/0203043] [INSPIRE].

  26. J.-S. Park, Topological open p-branes, in the proceedings of the Symplectic geometry and mirror symmetry, 4th KIAS Annual International Conference, August 14-18, Seoul, South Korea (2000), hep-th/0012141 [INSPIRE].

  27. C. Hofman and J.-S. Park, BV quantization of topological open membranes, Commun. Math. Phys. 249 (2004) 249 [hep-th/0209214] [INSPIRE].

  28. D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, math/0203110 [INSPIRE].

  29. D. Roytenberg, AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys. 79 (2007) 143 [hep-th/0608150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Henneaux, Lectures on the antifield-BRST formalism for gauge theories, Nucl. Phys. Proc. Suppl. 18A (1990) 47 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J. Gomis, J. Paris and S. Samuel, Antibracket, antifields and gauge theory quantization, Phys. Rept. 259 (1995) 1 [hep-th/9412228] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].

  33. D. Mylonas, P. Schupp and R.J. Szabo, Membrane σ-models and quantization of non-geometric flux backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].

  34. A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, σ-models for genuinely non-geometric backgrounds, JHEP 11 (2015) 182 [arXiv:1505.05457] [INSPIRE].

  35. T. Bessho, M.A. Heller, N. Ikeda and S. Watamura, Topological membranes, current algebras and H-flux-R-flux duality based on Courant algebroids, JHEP 04 (2016) 170 [arXiv:1511.03425] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  36. A. Chatzistavrakidis, L. Jonke, F.S. Khoo and R.J. Szabo, Double field theory and membrane σ-models, JHEP 07 (2018) 015 [arXiv:1802.07003] [INSPIRE].

  37. C.M. Hull and R.A. Reid-Edwards, Flux compactifications of M-theory on twisted tori, JHEP 10 (2006) 086 [hep-th/0603094] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. I. Bakhmatov et al., Exotic branes in exceptional field theory: the SL(5) duality group, JHEP 08 (2018) 021 [arXiv:1710.09740] [INSPIRE].

  39. N. Ikeda and K. Uchino, QP-structures of degree 3 and 4D topological field theory, Commun. Math. Phys. 303 (2011) 317 [arXiv:1004.0601] [INSPIRE].

  40. N. Ikeda, Lectures on AKSZ σ-models for Physicists, in the proceedings of the Workshop on Strings, Membranes and Topological Field Theory (WSPC), arXiv:1204.3714 [INSPIRE].

  41. M. Grützmann, H-twisted Lie algebroids, J. Geom. Phys. 61 (2011) 476 [arXiv:1005.5680].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. M. Grützmann and T. Strobl, General Yang-Mills type gauge theories for p-form gauge fields: From physics-based ideas to a mathematical framework or From Bianchi identities to twisted Courant algebroids, Int. J. Geom. Meth. Mod. Phys. 12 (2014) 1550009 [arXiv:1407.6759].

  43. U. Carow-Watamura et al., Off-shell covariantization of algebroid gauge theories, PTEP 2017 (2017) 083B01 [arXiv:1612.02612].

  44. Z. Kökényesi, A. Sinkovics and R.J. Szabo, AKSZ constructions for topological membranes on G 2 -manifolds, Fortsch. Phys. 66 (2018) 1800018 [arXiv:1802.04581] [INSPIRE].

  45. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281 [math/0209099] [INSPIRE].

  46. M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, Oxford, U.K. (2003), math/0401221 [INSPIRE].

  47. D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. Thesis, University of California at Berkeley, Berkeley, U.S.A. (1999), math/9910078.

  48. Y. Kosmann-Schwarzbach, Quasi, twisted, and all that. . . in Poisson geometry and Lie algebroid theory, Progr. Math. 232 (2005) 363 [math/0310359].

  49. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, Dirac structures on nilmanifolds and coexistence of fluxes, Nucl. Phys. B 883 (2014) 59 [arXiv:1311.4878] [INSPIRE].

  51. C.M. Hull and R.A. Reid-Edwards, Flux compactifications of string theory on twisted tori, Fortsch. Phys. 57 (2009) 862 [hep-th/0503114] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. T. Asakawa, H. Muraki, S. Sasa and S. Watamura, Poisson-generalized geometry and R-flux, Int. J. Mod. Phys. A 30 (2015) 1550097 [arXiv:1408.2649] [INSPIRE].

  53. M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].

  54. M.J. Duff et al., Membrane duality revisited, Nucl. Phys. B 901 (2015) 1 [arXiv:1509.02915] [INSPIRE].

  55. C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. R. Blumenhagen, X. Gao, D. Herschmann and P. Shukla, Dimensional oxidation of non-geometric fluxes in type II orientifolds, JHEP 10 (2013) 201 [arXiv:1306.2761] [INSPIRE].

    Article  ADS  Google Scholar 

  58. H. Samtleben and M. Weidner, The maximal D = 7 supergravities, Nucl. Phys. B 725 (2005) 383 [hep-th/0506237] [INSPIRE].

  59. D. Baraglia, Leibniz algebroids, twistings and exceptional generalized geometry, J. Geom. Phys. 62 (2012) 903 [arXiv:1101.0856] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. M. Cederwall and J. Palmkvist, L ∞ algebras for extended geometry from Borcherds superalgebras, arXiv:1804.04377 [INSPIRE].

  61. A.S. Arvanitakis, Brane Wess-Zumino terms from AKSZ and exceptional generalised geometry as an L ∞ -algebroid, arXiv:1804.07303 [INSPIRE].

  62. Y. Cagnacci, T. Codina and D. Marques, L ∞ algebras and tensor hierarchies in exceptional field theory and gauged supergravity, JHEP 01 (2019) 117 [arXiv:1807.06028] [INSPIRE].

  63. D.S. Berman, E.T. Musaev and R. Otsuki, Exotic branes in exceptional field theory: E 7(7) and beyond, JHEP 12 (2018) 053 [arXiv:1806.00430] [INSPIRE].

  64. D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].

  66. O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant Form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

  67. O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].

  68. O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].

  69. Z. Kökényesi, A. Sinkovics and R.J. Szabo, Double field theory for the A/B-models and topological S-duality in generalized geometry, Fortsch. Phys. 66 (2018) 1800069 [arXiv:1805.11485] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Division of Theoretical Physics, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia

    Athanasios Chatzistavrakidis & Larisa Jonke

  2. Arnold Sommerfeld Center for Theoretical Physics, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333, München, Germany

    Athanasios Chatzistavrakidis, Larisa Jonke & Dieter Lüst

  3. Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805, München, Germany

    Dieter Lüst

  4. Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh, EH14 4AS, U.K.

    Richard J. Szabo

  5. Maxwell Institute for Mathematical Sciences, Edinburgh, U.K.

    Richard J. Szabo

  6. The Higgs Centre for Theoretical Physics, Edinburgh, U.K.

    Richard J. Szabo

Authors
  1. Athanasios Chatzistavrakidis
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Larisa Jonke
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Dieter Lüst
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Richard J. Szabo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Athanasios Chatzistavrakidis.

Additional information

ArXiv ePrint: 1901.07775

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatzistavrakidis, A., Jonke, L., Lüst, D. et al. Fluxes in exceptional field theory and threebrane sigma-models. J. High Energ. Phys. 2019, 55 (2019). https://doi.org/10.1007/JHEP05(2019)055

Download citation

  • Received: 08 February 2019

  • Accepted: 22 April 2019

  • Published: 09 May 2019

  • DOI: https://doi.org/10.1007/JHEP05(2019)055

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Flux compactifications
  • M-Theory
  • Differential and Algebraic Geometry
  • Sigma Models
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.