Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Chaos and random matrices in supersymmetric SYK
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Quantum chaos, scrambling and operator growth in T T ¯ $$ T\overline{T} $$ deformed SYK models

13 December 2022

Song He, Pak Hang Chris Lau, … Long Zhao

Supersymmetry and Deterministic Chaos

01 September 2020

Stam Nicolis

Spectral decoupling in many-body quantum chaos

31 December 2020

Jordan Cotler & Nicholas Hunter-Jones

Supersymmetric Cluster Expansions and Applications to Random Schrödinger Operators

24 February 2021

Luca Fresta

Onset of random matrix behavior in scrambling systems

18 July 2018

Hrant Gharibyan, Masanori Hanada, … Masaki Tezuka

Quantum Lyapunov spectrum

10 April 2019

Hrant Gharibyan, Masanori Hanada, … Masaki Tezuka

On the Spectral Form Factor for Random Matrices

23 March 2023

Giorgio Cipolloni, László Erdős & Dominik Schröder

Operator growth in the SYK model

22 June 2018

Daniel A. Roberts, Douglas Stanford & Alexandre Streicher

Spacing statistics of energy spectra: random matrices, black hole thermalization, and echoes

05 April 2022

Krishan Saraswat & Niayesh Afshordi

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 30 May 2018

Chaos and random matrices in supersymmetric SYK

  • Nicholas Hunter-Jones  ORCID: orcid.org/0000-0001-8578-19581 &
  • Junyu Liu2 

Journal of High Energy Physics volume 2018, Article number: 202 (2018) Cite this article

  • 530 Accesses

  • 21 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27, KITP, U.S.A. (2015).

  2. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

  4. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Jensen, Chaos in AdS 2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  10. W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].

  11. C. Peng, M. Spradlin and A. Volovich, A supersymmetric SYK-like tensor model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].

  12. J. Murugan, D. Stanford and E. Witten, More on supersymmetric and 2d analogs of the SYK model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Yoon, Supersymmetric SYK model: bi-local collective superfield/supermatrix formulation, JHEP 10 (2017) 172 [arXiv:1706.05914] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Peng, M. Spradlin and A. Volovich, Correlators in the \( \mathcal{N}=2 \) supersymmetric SYK model, JHEP 10 (2017) 202 [arXiv:1706.06078] [INSPIRE].

  15. T. Kanazawa and T. Wettig, Complete random matrix classification of SYK models with \( \mathcal{N}=0,\;1 \) and 2 supersymmetry, JHEP 09 (2017) 050 [arXiv:1706.03044] [INSPIRE].

  16. S. Förste and I. Golla, Nearly AdS 2 SUGRA and the super-Schwarzian, Phys. Lett. B 771 (2017) 157 [arXiv:1703.10969] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry protected topological states, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].

  18. T. Li, J. Liu, Y. Xin and Y. Zhou, Supersymmetric SYK model and random matrix theory, JHEP 06 (2017) 111 [arXiv:1702.01738] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, JHEP 11 (2017) 149 [arXiv:1707.08013] [INSPIRE].

  20. N. Hunter-Jones, J. Liu and Y. Zhou, On thermalization in the SYK and supersymmetric SYK models, JHEP 02 (2018) 142 [arXiv:1710.03012] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. O. Bohigas, M.J. Giannoni and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984) 1 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    Article  ADS  Google Scholar 

  24. P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004 [arXiv:1511.04021] [INSPIRE].

  25. D.A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP 04 (2017) 121 [arXiv:1610.04903] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Cotler, N. Hunter-Jones, J. Liu and B. Yoshida, Chaos, complexity and random matrices, JHEP 11 (2017) 048 [arXiv:1706.05400] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. T. Tao, Topics in random matrix theory, Graduate Studies in Mathematics, American Mathematical Society, U.S.A. (2012).

  29. Vinayak and M. Žnidarič, Subsystem dynamics under random Hamiltonian evolution, J. Phys. A 45 (2012) 125204 [arXiv:1107.6035].

    Article  ADS  MathSciNet  Google Scholar 

  30. T.C. Bachlechner, D. Marsh, L. McAllister and T. Wrase, Supersymmetric vacua in random supergravity, JHEP 01 (2013) 136 [arXiv:1207.2763] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Altland and M.R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55 (1997) 1142 [INSPIRE].

    Article  ADS  Google Scholar 

  32. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Stanford and E. Witten, Fermionic localization of the Schwarzian theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].

  34. D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the conformal bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].

  37. A.M. García-García and J.J.M. Verbaarschot, Analytical spectral density of the Sachdev-Ye-Kitaev model at finite N , Phys. Rev. D 96 (2017) 066012 [arXiv:1701.06593] [INSPIRE].

  38. M. Mehta, Random matrices, Pure and Applied Mathematics. Elsevier Science, The Netherlands (2004).

    Chapter  Google Scholar 

  39. E. Brézin and S. Hikami, Spectral form factor in a random matrix theory, Phys. Rev. E 55 (1997) 4067 [cond-mat/9608116].

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Brézin and S. Hikami, Random matrix theory with an external source, Springer Briefs in Mathematical Physics, Springer, Germany (2017).

  41. A. del Campo, J. Molina-Vilaplana and J. Sonner, Scrambling the spectral form factor: unitarity constraints and exact results, Phys. Rev. D 95 (2017) 126008 [arXiv:1702.04350] [INSPIRE].

  42. A.V. Andreev and B.L. Altshuler, Spectral statistics beyond random matrix theory, Phys. Rev. Lett. 75 (1995) 902 [cond-mat/9503141].

    Article  ADS  Google Scholar 

  43. V.A. Marčenko and L.A. Pastur, Distribution of eigenvalues for some sets of random matrices, Math. USSR-Sb. 1 (1967) 457 [Mat. Sb. 72 (1967) 507].

    Article  Google Scholar 

  44. F.J. Dyson, Statistical theory of the energy levels of complex systems. III, J. Math. Phys. 3 (1962) 166.

    Article  ADS  MathSciNet  Google Scholar 

  45. T. Nagao and M. Wadati, Correlation functions of random matrix ensembles related to classical orthogonal polynomials, J. Phys. Soc. Jpn. 60 (1991) 3298.

    Article  ADS  MathSciNet  Google Scholar 

  46. A.J. Scott, Optimizing quantum process tomography with unitary 2-designs, J. Phys. A 41 (2008) 055308 [arXiv:0711.1017].

    Article  ADS  MathSciNet  Google Scholar 

  47. R.A. Davison et al., Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].

  48. K. Bulycheva, A note on the SYK model with complex fermions, JHEP 12 (2017) 069 [arXiv:1706.07411] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. E. Dyer and G. Gur-Ari, 2D CFT partition functions at late times, JHEP 08 (2017) 075 [arXiv:1611.04592] [INSPIRE].

  50. C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Entanglement scrambling in 2D conformal field theory, JHEP 09 (2015) 110 [arXiv:1506.03772] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. V. Balasubramanian, B. Craps, B. Czech and G. Sárosi, Echoes of chaos from string theory black holes, JHEP 03 (2017) 154 [arXiv:1612.04334] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. E. Perlmutter, Bounding the space of holographic CFTs with chaos, JHEP 10 (2016) 069 [arXiv:1602.08272] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. X. Chen and A.W.W. Ludwig, Universal spectral correlations in the chaotic wave function and the development of quantum chaos, arXiv:1710.02686 [INSPIRE].

  54. T. Iadecola and T.H. Hsieh, Floquet supersymmetry, arXiv:1710.05927.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California, 91125, U.S.A.

    Nicholas Hunter-Jones

  2. Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California, 91125, U.S.A.

    Junyu Liu

Authors
  1. Nicholas Hunter-Jones
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Junyu Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Nicholas Hunter-Jones.

Additional information

ArXiv ePrint: 1710.08184

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter-Jones, N., Liu, J. Chaos and random matrices in supersymmetric SYK. J. High Energ. Phys. 2018, 202 (2018). https://doi.org/10.1007/JHEP05(2018)202

Download citation

  • Received: 30 January 2018

  • Revised: 18 May 2018

  • Accepted: 25 May 2018

  • Published: 30 May 2018

  • DOI: https://doi.org/10.1007/JHEP05(2018)202

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 2D Gravity
  • AdS-CFT Correspondence
  • Matrix Models
  • Random Systems
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature