Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Internal supersymmetry and small-field Goldstini

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 30 May 2018
  • Volume 2018, article number 190, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Internal supersymmetry and small-field Goldstini
Download PDF
  • Diederik Roest1,
  • Pelle Werkman1 &
  • Yusuke Yamada  ORCID: orcid.org/0000-0003-2684-516X2 
  • 267 Accesses

  • 5 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The dynamics of the Goldstino mode of spontaneously broken supersymmetry is universal, being fully determined by the non-linearly realized symmetry. We investigate the small-field limit of this theory. This model non-linearly realizes an alternative supersymmetry algebra with vanishing anti-commutators between the fermionic generators, much like an internal supersymmetry. This Goldstino theory is akin to the Galilean scalar field theory that arises as the small-field limit of Dirac-Born-Infeld theory and non-linearly realizes the Galilean symmetry. Indeed, the small-field Goldstino is the partner of a complex Galilean scalar field under conventional supersymmetry. We close with the generalization to extended internal supersymmetry and a discussion of its higher-dimensional origin.

Article PDF

Download to read the full article text

Similar content being viewed by others

Renormalization properties of a Galilean Wess-Zumino model

Article Open access 13 June 2019

Some pathways in non-linear supersymmetry: Special geometry Born-Infeld’s, cosmology and dualities

Article 01 October 2015

Supersymmetry algebra in super Yang-Mills theories

Article Open access 30 September 2015
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].

  2. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].

  3. D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3.

    MathSciNet  Google Scholar 

  4. C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].

    Article  ADS  Google Scholar 

  5. C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A Periodic Table of Effective Field Theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Padilla, D. Stefanyszyn and T. Wilson, Probing Scalar Effective Field Theories with the Soft Limits of Scattering Amplitudes, JHEP 04 (2017) 015 [arXiv:1612.04283] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].

    Article  Google Scholar 

  8. K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].

    ADS  Google Scholar 

  9. G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G.R. Dvali, G. Gabadadze and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].

    ADS  Google Scholar 

  13. S. Peirone, N. Frusciante, B. Hu, M. Raveri and A. Silvestri, Do current cosmological observations rule out all Covariant Galileons?, Phys. Rev. D 97 (2018) 063518 [arXiv:1711.04760] [INSPIRE].

    ADS  Google Scholar 

  14. D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].

    Article  ADS  Google Scholar 

  15. E.A. Ivanov and A.A. Kapustnikov, General Relationship Between Linear and Nonlinear Realizations of Supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].

    ADS  Google Scholar 

  16. E.A. Ivanov and A.A. Kapustnikov, The nonlinear realization structure of models with spontaneously broken supersymmetry, J. Phys. G 8 (1982) 167 [INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Deffayet, A.E. Gümrükçüoglu, S. Mukohyama and Y. Wang, A no-go theorem for generalized vector Galileons on flat spacetime, JHEP 04 (2014) 082 [arXiv:1312.6690] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Kallosh, Volkov-Akulov theory and D-branes, hep-th/9705118 [INSPIRE].

  19. R. Kallosh, A. Karlsson and D. Murli, Origin of Soft Limits from Nonlinear Supersymmetry in Volkov-Akulov Theory, JHEP 03 (2017) 081 [arXiv:1609.09127] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Haag, J.T. Lopuszanski and M. Sohnius, All Possible Generators of Supersymmetries of the s Matrix, Nucl. Phys. B 88 (1975) 257 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. S.R. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys. Rev. 159 (1967) 1251 [INSPIRE].

    Article  ADS  Google Scholar 

  22. J. Bagger and A. Galperin, A new Goldstone multiplet for partially broken supersymmetry, Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. J. Bagger and A. Galperin, The tensor Goldstone multiplet for partially broken supersymmetry, Phys. Lett. B 412 (1997) 296 [hep-th/9707061] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].

    ADS  Google Scholar 

  25. F. Gonzalez-Rey, I.Y. Park and M. Roček, On dual 3-brane actions with partially broken N = 2 supersymmetry, Nucl. Phys. B 544 (1999) 243 [hep-th/9811130] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP 02 (2017) 034 [arXiv:1605.06111] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of Strong Coupling for LHC Searches, JHEP 11 (2016) 141 [arXiv:1603.03064] [INSPIRE].

    Article  ADS  Google Scholar 

  28. B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, The other effective fermion compositeness, JHEP 11 (2017) 020 [arXiv:1706.03070] [INSPIRE].

    Article  ADS  Google Scholar 

  29. H. Abe, Y. Sakamura and Y. Yamada, N = 1 superfield description of vector-tensor couplings in six dimensions, JHEP 04 (2015) 035 [arXiv:1501.07642] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P (X, ϕ) and the Ghost Condensate, Phys. Rev. D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].

    ADS  Google Scholar 

  32. M. Koehn, J.-L. Lehners and B. Ovrut, Supersymmetric cubic Galileons have ghosts, Phys. Rev. D 88 (2013) 023528 [arXiv:1302.0840] [INSPIRE].

    ADS  Google Scholar 

  33. F. Farakos, C. Germani and A. Kehagias, On ghost-free supersymmetric galileons, JHEP 11 (2013) 045 [arXiv:1306.2961] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. J.M. Queiruga, Supersymmetric galileons and auxiliary fields in 2+1 dimensions, Phys. Rev. D 95 (2017) 125001 [arXiv:1612.04727] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi and D. Langlois, Healthy degenerate theories with higher derivatives, JCAP 07 (2016) 033 [arXiv:1603.09355] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Klein and D. Roest, Exorcising the Ostrogradsky ghost in coupled systems, JHEP 07 (2016) 130 [arXiv:1604.01719] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. R. Kimura, Y. Sakakihara and M. Yamaguchi, Ghost free systems with coexisting bosons and fermions, Phys. Rev. D 96 (2017) 044015 [arXiv:1704.02717] [INSPIRE].

    ADS  Google Scholar 

  38. R. Kallosh, Nonlinear (Super)Symmetries and Amplitudes, JHEP 03 (2017) 038 [arXiv:1609.09123] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. J. Hughes, J. Liu and J. Polchinski, Supermembranes, Phys. Lett. B 180 (1986) 370 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Khoury, J.-L. Lehners and B.A. Ovrut, Supersymmetric Galileons, Phys. Rev. D 84 (2011) 043521 [arXiv:1103.0003] [INSPIRE].

    ADS  Google Scholar 

  41. K. Kamimura and S. Onda, Contractions of AdS brane algebra and superGalileon Lagrangians, J. Math. Phys. 54 (2013) 062503 [arXiv:1303.5506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    Diederik Roest & Pelle Werkman

  2. Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA, 94305, U.S.A.

    Yusuke Yamada

Authors
  1. Diederik Roest
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pelle Werkman
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yusuke Yamada
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yusuke Yamada.

Additional information

ArXiv ePrint: 1710.02480

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roest, D., Werkman, P. & Yamada, Y. Internal supersymmetry and small-field Goldstini. J. High Energ. Phys. 2018, 190 (2018). https://doi.org/10.1007/JHEP05(2018)190

Download citation

  • Received: 02 March 2018

  • Accepted: 22 May 2018

  • Published: 30 May 2018

  • DOI: https://doi.org/10.1007/JHEP05(2018)190

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Extended Supersymmetry
  • Space-Time Symmetries
  • Superspaces
  • Supersymmetry Breaking
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature