The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual

Abstract

We give an exposition of the SYK model with several new results. A non-local correction to the Schwarzian effective action is found. The same action is obtained by integrating out the bulk degrees of freedom in a certain variant of dilaton gravity. We also discuss general properties of out-of-time-order correlators.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk at Kavli Institute for Theoretical Physics, Santa Barbara U.S.A. (2015), http://online.kitp.ucsb.edu/online/joint98/kitaev/.

  3. [3]

    A. Kitaev, A simple model of quantum holography, talks at Kavli Institute for Theoretical Physics, Santa Barbara U.S.A. (2015), http://online.kitp.ucsb.edu/online/entangled15/kitaev/, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.

  4. [4]

    O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev. B 59 (1999) 5341 [cond-mat/9806119].

    ADS  Article  Google Scholar 

  5. [5]

    A. Georges, O. Parcollet and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63 (2001) 134406 [cond-mat/0009388].

  6. [6]

    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech. 1011 (2010) P11022 [arXiv:1010.0682] [INSPIRE].

    Article  Google Scholar 

  8. [8]

    T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys. B 253 (1985) 173 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    G. ’t Hooft, Strings From Gravity, Phys. Scripta T 15 (1987) 143.

  10. [10]

    G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys. B 335 (1990) 138 [INSPIRE].

  11. [11]

    G. ’t Hooft, The Scattering matrix approach for the quantum black hole: An Overview, Int. J. Mod. Phys. A 11 (1996) 4623 [gr-qc/9607022] [INSPIRE].

  12. [12]

    A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. Phys. JETP 28 (1969) 1200.

    ADS  Google Scholar 

  13. [13]

    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk at Breakthrough Prize Symposium, San Francisco U.S.A. (2014), https://www.youtube.com/watch?v=OQ9qN8j7EZI.

  16. [16]

    Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    A.J. Bray and M.A. Moore, Replica theory of quantum spin glasses, J. Phys. C 13 (1980) L655.

    ADS  Google Scholar 

  19. [19]

    J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. [21]

    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  23. [23]

    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    A. Jevicki, K. Suzuki and J. Yoon, Bi-Local Holography in the SYK Model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    A. Jevicki and K. Suzuki, Bi-Local Holography in the SYK Model: Perturbations, JHEP 11 (2016) 046 [arXiv:1608.07567] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  27. [27]

    D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].

    Article  Google Scholar 

  30. [30]

    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. [31]

    D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    E. Witten, An SYK-like model without disorder, arXiv:1610.09758 [INSPIRE].

  33. [33]

    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. [34]

    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    C. Peng, M. Spradlin and A. Volovich, A Supersymmetric SYK-like Tensor Model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    D. Louis-Martinez and G. Kunstatter, Birkhoff’s theorem in two-dimensional dilaton gravity, Phys. Rev. D 49 (1994) 5227.

    ADS  MathSciNet  Google Scholar 

  37. [37]

    D.J. Gross and V. Rosenhaus, The Bulk Dual of SYK: Cubic Couplings, JHEP 05 (2017) 092 [arXiv:1702.08016] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    A. Kitaev, Notes on \( \tilde{\mathrm{SL}}\left(2,\ \mathrm{\mathbb{R}}\right) \) representations, arXiv:1711.08169 [INSPIRE].

  39. [39]

    J. Repka, Tensor products of unitary representations of SL2(ℝ), Bull. Amer. Math. Soc. 82 (1976) 930.

    MathSciNet  Article  Google Scholar 

  40. [40]

    J. Repka, Tensor products of unitary representations of SL2(ℝ), Am. J. Math. 100 (1978) 747.

    MathSciNet  Article  Google Scholar 

  41. [41]

    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  43. [43]

    J. Polchinski, Chaos in the black hole S-matrix, arXiv:1505.08108 [INSPIRE].

  44. [44]

    R.P. Feynman and F.L. Vernon, Jr., The Theory of a general quantum system interacting with a linear dissipative system, Annals Phys. 24 (1963) 118 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    R. Jackiw, Lower dimensional gravity, Nucl. Phys. B 252 (1985) 343.

    ADS  Article  Google Scholar 

  47. [47]

    C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett. B 126 (1983) 41.

    ADS  Article  Google Scholar 

  48. [48]

    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    J. Maldacena, private communication.

  52. [52]

    T. Banks and M. O’Loughlin, Two-dimensional quantum gravity in Minkowski space, Nucl. Phys. B 362 (1991) 649 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Josephine Suh.

Additional information

ArXiv ePrint: 1711.08467

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kitaev, A., Suh, S.J. The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual. J. High Energ. Phys. 2018, 183 (2018). https://doi.org/10.1007/JHEP05(2018)183

Download citation

Keywords

  • 2D Gravity
  • AdS-CFT Correspondence
  • Black Holes
  • Models of Quantum Gravity