From CFT to Ramond super-quantum curves

Abstract

As we have shown in the previous work, using the formalism of matrix and eigenvalue models, to a given classical algebraic curve one can associate an infinite family of quantum curves, which are in one-to-one correspondence with singular vectors of a certain (e.g. Virasoro or super-Virasoro) underlying algebra. In this paper we reformulate this problem in the language of conformal field theory. Such a reformulation has several advantages: it leads to the identification of quantum curves more efficiently, it proves in full generality that they indeed have the structure of singular vectors, it enables identification of corresponding eigenvalue models. Moreover, this approach can be easily generalized to other underlying algebras. To illustrate these statements we apply the conformal field theory formalism to the case of the Ramond version of the super-Virasoro algebra. We derive two classes of corresponding Ramond super-eigenvalue models, construct Ramond super-quantum curves that have the structure of relevant singular vectors, and identify underlying Ramond super-spectral curves. We also analyze Ramond multi-Penner models and show that they lead to supersymmetric generalizations of BPZ equations.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, JHEP 02 (2008) 106 [arXiv:0709.4446] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    R. Dijkgraaf, L. Hollands and P. Sulkowski, Quantum curves and D-modules, JHEP 11 (2009) 047 [arXiv:0810.4157] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    M. Aganagic, M.C.N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum geometry of refined topological strings, JHEP 11 (2012) 019 [arXiv:1105.0630] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    R. Dijkgraaf, H. Fuji and M. Manabe, The volume conjecture, perturbative knot invariants and recursion relations for topological strings, Nucl. Phys. B 849 (2011) 166 [arXiv:1010.4542] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    G. Borot and B. Eynard, All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials, arXiv:1205.2261 [INSPIRE].

  8. [8]

    H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    P. Dunin-Barkowski, M. Mulase, P. Norbury, A. Popolitov and S. Shadrin, Quantum spectral curve for the Gromov-Witten theory of the complex projective line, arXiv:1312.5336 [INSPIRE].

  10. [10]

    A. Schwarz, Quantum curves, Commun. Math. Phys. 338 (2015) 483 [arXiv:1401.1574] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    P. Norbury, Quantum curves and topological recursion, Proc. Symp. Pure Math. 93 (2015) 41 [arXiv:1502.04394] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  12. [12]

    M. Mariño, Spectral Theory and Mirror Symmetry, arXiv:1506.07757 [INSPIRE].

  13. [13]

    O. Dumitrescu and M. Mulase, Lectures on the topological recursion for Higgs bundles and quantum curves, arXiv:1509.09007 [INSPIRE].

  14. [14]

    V. Bouchard and B. Eynard, Reconstructing WKB from topological recursion, arXiv:1606.04498 [INSPIRE].

  15. [15]

    V. Bouchard, N.K. Chidambaram and T. Dauphinee, Quantizing Weierstrass, arXiv:1610.00225 [INSPIRE].

  16. [16]

    R. Belliard, B. Eynard and O. Marchal, Integrable differential systems of topological type and reconstruction by the topological recursion, Annales Henri Poincaré 18 (2017) 3193 [arXiv:1610.00496] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    H. Fuji, K. Iwaki, M. Manabe and I. Satake, Reconstructing GKZ via topological recursion, arXiv:1708.09365 [INSPIRE].

  18. [18]

    S. Gukov and P. Sulkowski, A-polynomial, B-model and Quantization, JHEP 02 (2012) 070 [arXiv:1108.0002] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Num. Theor. Phys. 1 (2007) 347 [math-ph/0702045] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  20. [20]

    M. Manabe and P. Sulkowski, Quantum curves and conformal field theory, Phys. Rev. D 95 (2017) 126003 [arXiv:1512.05785] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. [21]

    M. Fukuma, H. Kawai and R. Nakayama, Continuum Schwinger-dyson Equations and Universal Structures in Two-dimensional Quantum Gravity, Int. J. Mod. Phys. A 6 (1991) 1385 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, Loop equations and Virasoro constraints in nonperturbative 2 − D quantum gravity, Nucl. Phys. B 348 (1991) 435 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    H. Awata, Y. Matsuo, S. Odake and J. Shiraishi, Collective field theory, Calogero-Sutherland model and generalized matrix models, Phys. Lett. B 347 (1995) 49 [hep-th/9411053] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    P. Ciosmak, L. Hadasz, M. Manabe and P. Sulkowski, Super-quantum curves from super-eigenvalue models, JHEP 10 (2016) 044 [arXiv:1608.02596] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    L. Álvarez-Gaumé, H. Itoyama, J.L. Manes and A. Zadra, Superloop equations and two-dimensional supergravity, Int. J. Mod. Phys. A 7 (1992) 5337 [hep-th/9112018] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    K. Becker and M. Becker, Nonperturbative solution of the superVirasoro constraints, Mod. Phys. Lett. A 8 (1993) 1205 [hep-th/9301017] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    I.N. McArthur, The Partition function for the supersymmetric Eigenvalue model, Mod. Phys. Lett. A 8 (1993) 3355 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    J.C. Plefka, Supersymmetric generalizations of matrix models, Ph.D. Thesis, Hannover University, Hannover Germany (1996) [hep-th/9601041] [INSPIRE].

  29. [29]

    G.W. Semenoff and R.J. Szabo, Fermionic matrix models, Int. J. Mod. Phys. A 12 (1997) 2135 [hep-th/9605140] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    H. Itoyama and H. Kanno, Supereigenvalue model and Dijkgraaf-Vafa proposal, Phys. Lett. B 573 (2003) 227 [hep-th/0304184] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    J.M. Rabin and P.G.O. Freund, Supertori are algebraic curves, Commun. Math. Phys. 114 (1988) 131 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    J.M. Rabin, Superelliptic curves, J. Geom. Phys. 15 (1995) 252 [hep-th/9302105] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    P. Ciosmak, L. Hadasz, M. Manabe and P. Sulkowski, Singular vector structure of quantum curves, in Proceedings of the 2016 AMS von Neumann Symposium, Charlotte U.S.A. (2017) [arXiv:1711.08031] [INSPIRE].

  34. [34]

    S. Chiantese, A. Klemm and I. Runkel, Higher order loop equations for A(r) and D(r) quiver matrix models, JHEP 03 (2004) 033 [hep-th/0311258] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    H. Awata and Y. Yamada, Five-dimensional AGT Relation and the Deformed beta-ensemble, Prog. Theor. Phys. 124 (2010) 227 [arXiv:1004.5122] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    J. Teschner, Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands correspondence I, Adv. Theor. Math. Phys. 15 (2011) 471 [arXiv:1005.2846] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  38. [38]

    M. Kato and S. Matsuda, Null field construction in conformal and superconformal algebras, in Proceedings of Conformal Field Theory and solvable lattice models, Kyoto Japan (1986), pg. 205, Tsukuba KEK-TH-151 (1987).

  39. [39]

    R.H. Poghossian, Structure constants in the N = 1 superLiouville field theory, Nucl. Phys. B 496 (1997) 451 [hep-th/9607120] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    D. Chorazkiewicz, L. Hadasz and Z. Jaskolski, Braiding properties of the N = 1 super-conformal blocks (Ramond sector), JHEP 11 (2011) 060 [arXiv:1108.2355] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    A.B. Zamolodchikov and R.G. Poghossian, Operator algebra in two-dimensional superconformal field theory. (In Russian), Sov. J. Nucl. Phys. 47 (1988) 929 [INSPIRE].

  42. [42]

    O. Blondeau-Fournier, P. Mathieu, D. Ridout and S. Wood, The super-Virasoro singular vectors and Jack superpolynomials relationship revisited, Nucl. Phys. B 913 (2016) 34 [arXiv:1605.08621] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leszek Hadasz.

Additional information

ArXiv ePrint: 1712.07354

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciosmak, P., Hadasz, L., Jaskólski, Z. et al. From CFT to Ramond super-quantum curves. J. High Energ. Phys. 2018, 133 (2018). https://doi.org/10.1007/JHEP05(2018)133

Download citation

Keywords

  • Conformal Field Theory
  • Matrix Models