Scale-invariant scalar field dark matter through the Higgs portal

Abstract

We discuss the dynamics and phenomenology of an oscillating scalar field coupled to the Higgs boson that accounts for the dark matter in the Universe. The model assumes an underlying scale invariance such that the scalar field only acquires mass after the electroweak phase transition, behaving as dark radiation before the latter takes place. While for a positive coupling to the Higgs field the dark scalar is stable, for a negative coupling it acquires a vacuum expectation value after the electroweak phase transition and may decay into photon pairs, albeit with a mean lifetime much larger than the age of the Universe. We explore possible astrophysical and laboratory signatures of such a dark matter candidate in both cases, including annihilation and decay into photons, Higgs decay, photon-dark scalar oscillations and induced oscillations of fundamental constants. We find that dark matter within this scenario will be generically difficult to detect in the near future, except for the promising case of a 7 keV dark scalar decaying into photons, which naturally explains the observed galactic and extra-galactic 3.5 keV X-ray line.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].

  2. [2]

    M.C. Bento, O. Bertolami, R. Rosenfeld and L. Teodoro, Selfinteracting dark matter and invisibly decaying Higgs, Phys. Rev. D 62 (2000) 041302 [astro-ph/0003350] [INSPIRE].

  3. [3]

    M.C. Bento, O. Bertolami and R. Rosenfeld, Cosmological constraints on an invisibly decaying Higgs boson, Phys. Lett. B 518 (2001) 276 [hep-ph/0103340] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    J. March-Russell, S.M. West, D. Cumberbatch and D. Hooper, Heavy dark matter through the Higgs portal, JHEP 07 (2008) 058 [arXiv:0801.3440] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    A. Biswas and D. Majumdar, The real gauge singlet scalar extension of standard model: a possible candidate of cold dark matter, Pramana 80 (2013) 539 [arXiv:1102.3024] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M. Pospelov and A. Ritz, Higgs decays to dark matter: beyond the minimal model, Phys. Rev. D 84 (2011) 113001 [arXiv:1109.4872] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    N. Mahajan, Anomalous gauge boson couplings, 125 GeV Higgs and singlet scalar dark matter, arXiv:1208.4725 [INSPIRE].

  8. [8]

    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].

  9. [9]

    K. Enqvist, S. Nurmi, T. Tenkanen and K. Tuominen, Standard model with a real singlet scalar and inflation, JCAP 08 (2014) 035 [arXiv:1407.0659] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    C. Kouvaris, I.M. Shoemaker and K. Tuominen, Self-interacting dark matter through the Higgs portal, Phys. Rev. D 91 (2015) 043519 [arXiv:1411.3730] [INSPIRE].

  11. [11]

    R. Costa, A.P. Morais, M.O.P. Sampaio and R. Santos, Two-loop stability of a complex singlet extended standard model, Phys. Rev. D 92 (2015) 025024 [arXiv:1411.4048] [INSPIRE].

  12. [12]

    M. Duerr, P. Fileviez Pérez and J. Smirnov, Scalar dark matter: direct vs. indirect detection, JHEP 06 (2016) 152 [arXiv:1509.04282] [INSPIRE].

  13. [13]

    H. Han and S. Zheng, New constraints on Higgs-portal scalar dark matter, JHEP 12 (2015) 044 [arXiv:1509.01765] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    H. Han and S. Zheng, Higgs-portal scalar dark matter: scattering cross section and observable limits, Nucl. Phys. B 914 (2017) 248 [arXiv:1510.06165] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    S. Nurmi, T. Tenkanen and K. Tuominen, Inflationary imprints on dark matter, JCAP 11 (2015) 001 [arXiv:1506.04048] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    T. Tenkanen, Cosmic inflation constrains scalar dark matter, Cogent Phys. 2 (2015) 1029845.

    Article  Google Scholar 

  17. [17]

    K. Kainulainen et al., Isocurvature Constraints on Portal Couplings, JCAP 06 (2016) 022 [arXiv:1601.07733] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    O. Bertolami, C. Cosme and J.G. Rosa, Scalar field dark matter and the Higgs field, Phys. Lett. B 759 (2016) 1 [arXiv:1603.06242] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    C. Cosme, J.G. Rosa and O. Bertolami, Scalar field dark matter with spontaneous symmetry breaking and the 3.5 keV line, Phys. Lett. B 781 (2018) 639 [arXiv:1709.09674] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J. García-Bellido, J. Rubio, M. Shaposhnikov and D. Zenhausern, Higgs-dilaton cosmology: from the early to the late universe, Phys. Rev. D 84 (2011) 123504 [arXiv:1107.2163] [INSPIRE].

  21. [21]

    F. Bezrukov, G.K. Karananas, J. Rubio and M. Shaposhnikov, Higgs-dilaton cosmology: an effective field theory approach, Phys. Rev. D 87 (2013) 096001 [arXiv:1212.4148] [INSPIRE].

  22. [22]

    P.G. Ferreira, C.T. Hill and G.G. Ross, Scale-independent inflation and hierarchy generation, Phys. Lett. B 763 (2016) 174 [arXiv:1603.05983] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    P.G. Ferreira, C.T. Hill and G.G. Ross, Weyl current, scale-invariant inflation and Planck scale generation, Phys. Rev. D 95 (2017) 043507 [arXiv:1610.09243] [INSPIRE].

  24. [24]

    M. Heikinheimo et al., Physical naturalness and dynamical breaking of classical scale invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    E. Gabrielli et al., Towards completing the standard model: vacuum stability, EWSB and dark matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].

  26. [26]

    A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080 [arXiv:1403.4226] [INSPIRE].

  27. [27]

    M. Heikinheimo, T. Tenkanen and K. Tuominen, WIMP miracle of the second kind, Phys. Rev. D 96 (2017) 023001 [arXiv:1704.05359] [INSPIRE].

  28. [28]

    A. Eichhorn, Y. Hamada, J. Lumma and M. Yamada, Quantum gravity fluctuations flatten the Planck-scale Higgs potential, Phys. Rev. D 97 (2018) 086004 [arXiv:1712.00319] [INSPIRE].

  29. [29]

    A. Salvio, Inflationary perturbations in no-scale theories, Eur. Phys. J. C 77 (2017) 267 [arXiv:1703.08012] [INSPIRE].

  30. [30]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].

  31. [31]

    A. Riotto, Inflation and the theory of cosmological perturbations, ICTP Lect. Notes Ser. 14 (2003) 317 [hep-ph/0210162] [INSPIRE].

  32. [32]

    M. Bastero-Gil et al., The role of fluctuation-dissipation dynamics in setting initial conditions for inflation, JCAP 01 (2018) 002 [arXiv:1612.04726] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    P.B. Greene, L. Kofman, A.D. Linde and A.A. Starobinsky, Structure of resonance in preheating after inflation, Phys. Rev. D 56 (1997) 6175 [hep-ph/9705347] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    K. Ichikawa, T. Suyama, T. Takahashi and M. Yamaguchi, Primordial curvature fluctuation and its non-gaussianity in models with modulated reheating, Phys. Rev. D 78 (2008) 063545 [arXiv:0807.3988] [INSPIRE].

  35. [35]

    A. Cuoco, B. Eiteneuer, J. Heisig and M. Krämer, A global fit of the γ-ray galactic center excess within the scalar singlet Higgs portal model, JCAP 06 (2016) 050 [arXiv:1603.08228] [INSPIRE].

    Article  Google Scholar 

  36. [36]

    ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP 11 (2015) 206 [arXiv:1509.00672] [INSPIRE].

  37. [37]

    N. Prantzos et al., The 511 keV emission from positron annihilation in the Galaxy, Rev. Mod. Phys. 83 (2011) 1001 [arXiv:1009.4620] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    P. Jean et al., Spectral analysis of the galactic e + e annihilation emission, Astron. Astrophys. 445 (2006) 579 [astro-ph/0509298] [INSPIRE].

  39. [39]

    J. Knodlseder et al., The All-sky distribution of 511 keV electron-positron annihilation emission, Astron. Astrophys. 441 (2005) 513 [astro-ph/0506026] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    E. Churazov et al., Positron annihilation spectrum from the Galactic Center region observed by SPI/INTEGRAL, Mon. Not. Roy. Astron. Soc. 357 (2005) 1377 [astro-ph/0411351].

    ADS  Article  Google Scholar 

  41. [41]

    P. Jean et al., Early SPI/INTEGRAL measurements of 511 keV line emission from the 4th quadrant of the Galaxy, Astron. Astrophys. 407 (2003) L55 [astro-ph/0309484] [INSPIRE].

  42. [42]

    R.J. Wilkinson, A.C. Vincent, C. Boehm and C. McCabe, Ruling out the light weakly interacting massive particle explanation of the Galactic 511 keV line, Phys. Rev. D 94 (2016) 103525 [arXiv:1602.01114] [INSPIRE].

  43. [43]

    L. Bergstrom, P. Ullio and J.H. Buckley, Observability of gamma-rays from dark matter neutralino annihilations in the Milky Way halo, Astropart. Phys. 9 (1998) 137 [astro-ph/9712318] [INSPIRE].

  44. [44]

    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

  45. [45]

    E. Bulbul et al., Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters, Astrophys. J. 789 (2014) 13 [arXiv:1402.2301] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster, Phys. Rev. Lett. 113 (2014) 251301 [arXiv:1402.4119] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    A. Boyarsky, J. Franse, D. Iakubovskyi and O. Ruchayskiy, Checking the dark matter origin of a 3.53 keV line with the Milky Way center, Phys. Rev. Lett. 115 (2015) 161301 [arXiv:1408.2503] [INSPIRE].

  48. [48]

    N. Cappelluti et al., Searching for the 3.5 keV line in the deep fields with Chandra: the 10 Ms observations, Astrophys. J. 854 (2018) 179 [arXiv:1701.07932] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    T. Higaki, K.S. Jeong and F. Takahashi, The 7 keV axion dark matter and the X-ray line signal, Phys. Lett. B 733 (2014) 25 [arXiv:1402.6965] [INSPIRE].

  50. [50]

    J. Jaeckel, J. Redondo and A. Ringwald, 3.55 keV hint for decaying axionlike particle dark matter, Phys. Rev. D 89 (2014) 103511 [arXiv:1402.7335] [INSPIRE].

  51. [51]

    E. Dudas, L. Heurtier and Y. Mambrini, Generating X-ray lines from annihilating dark matter, Phys. Rev. D 90 (2014) 035002 [arXiv:1404.1927] [INSPIRE].

  52. [52]

    F.S. Queiroz and K. Sinha, The poker face of the Majoron dark matter model: LUX to keV line, Phys. Lett. B 735 (2014) 69 [arXiv:1404.1400] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    J. Heeck and D. Teresi, Cold keV dark matter from decays and scatterings, Phys. Rev. D 96 (2017) 035018 [arXiv:1706.09909] [INSPIRE].

  54. [54]

    T.E. Jeltema and S. Profumo, Discovery of a 3.5 keV line in the Galactic Centre and a critical look at the origin of the line across astronomical targets, Mon. Not. Roy. Astron. Soc. 450 (2015) 2143 [arXiv:1408.1699] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    A. Boyarsky et al., Comment on the paperDark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV lineby T. Jeltema and S. Profumo, arXiv:1408.4388 [INSPIRE].

  56. [56]

    E. Bulbul et al., Comment onDark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line”, arXiv:1409.4143 [INSPIRE].

  57. [57]

    D. Iakubovskyi, Checking the potassium origin of the new emission line at 3.5 keV using the Kxix line complex at 3.7 keV, Mon. Not. Roy. Astron. Soc. 453 (2015) 4097 [arXiv:1507.02857] [INSPIRE].

  58. [58]

    T.E. Jeltema and S. Profumo, Deep XMM observations of Draco rule out at the 99% confidence level a dark matter decay origin for the 3.5 keV line, Mon. Not. Roy. Astron. Soc. 458 (2016) 3592 [arXiv:1512.01239] [INSPIRE].

  59. [59]

    O. Ruchayskiy et al., Searching for decaying dark matter in deep XMM-Newton observation of the Draco dwarf spheroidal, Mon. Not. Roy. Astron. Soc. 460 (2016) 1390 [arXiv:1512.07217] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    S.L. Cheng, C.Q. Geng and W.T. Ni, Axion-photon couplings in invisible axion models, Phys. Rev. D 52 (1995) 3132 [hep-ph/9506295] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    J.G. Rosa and T.W. Kephart, Black hole lasers powered by axion superradiant instabilities, arXiv:1709.06581 [INSPIRE].

  63. [63]

    J. Redondo and A. Ringwald, Light shining through walls, Contemp. Phys. 52 (2011) 211 [arXiv:1011.3741].

    ADS  Article  Google Scholar 

  64. [64]

    ALPS collaboration, K. Ehret, The ALPS light shining through a wall experimentWISP search in the laboratory, arXiv:1006.5741 [INSPIRE].

  65. [65]

    K. Ehret et al., New ALPS results on hidden-sector lightweights, Phys. Lett. B 689 (2010) 149 [arXiv:1004.1313] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    K. Melnikov and O.I. Yakovlev, Higgstwo photon decay: QCD radiative correction, Phys. Lett. B 312 (1993) 179 [hep-ph/9302281] [INSPIRE].

  67. [67]

    F. Januschek et al., Performance of the LBNL FastCCD for the european XFEL, in the proceedings of the IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), October 29-November 6, (2016), arXiv:1612.03605.

  68. [68]

    T. Damour and J.F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82 (2010) 084033 [arXiv:1007.2792] [INSPIRE].

  69. [69]

    K. Van Tilburg, N. Leefer, L. Bougas and D. Budker, Search for ultralight scalar dark matter with atomic spectroscopy, Phys. Rev. Lett. 115 (2015) 011802 [arXiv:1503.06886] [INSPIRE].

  70. [70]

    Y.V. Stadnik and V.V. Flambaum, Searching for dark matter and variation of fundamental constants with laser and maser interferometry, Phys. Rev. Lett. 114 (2015) 161301 [arXiv:1412.7801] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    A. Arvanitaki, J. Huang and K. Van Tilburg, Searching for dilaton dark matter with atomic clocks, Phys. Rev. D 91 (2015) 015015 [arXiv:1405.2925] [INSPIRE].

  72. [72]

    Y.V. Stadnik and V.V. Flambaum, Can dark matter induce cosmological evolution of the fundamental constants of Nature?, Phys. Rev. Lett. 115 (2015) 201301 [arXiv:1503.08540] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    Y.V. Stadnik and V.V. Flambaum, Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark matter detection, Phys. Rev. A 93 (2016) 063630 [arXiv:1511.00447] [INSPIRE].

  74. [74]

    Y.V. Stadnik and V.V. Flambaum, Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy, Phys. Rev. A 94 (2016) 022111 [arXiv:1605.04028] [INSPIRE].

  75. [75]

    A. Hees, J. Guéna, M. Abgrall, S. Bize and P. Wolf, Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons, Phys. Rev. Lett. 117 (2016) 061301 [arXiv:1604.08514] [INSPIRE].

  76. [76]

    A. Arvanitaki, S. Dimopoulos and K. Van Tilburg, Sound of dark matter: searching for light scalars with resonant-mass detectors, Phys. Rev. Lett. 116 (2016) 031102 [arXiv:1508.01798] [INSPIRE].

  77. [77]

    A. Arvanitaki et al., Search for light scalar dark matter with atomic gravitational wave detectors, Phys. Rev. D 97 (2018) 075020 [arXiv:1606.04541] [INSPIRE].

  78. [78]

    A. Arvanitaki et al., String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

  79. [79]

    E.W. Kolb and M.S. Turner, The early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  80. [80]

    S.E. Larsson, S. Sarkar and P.L. White, Evading the cosmological domain wall problem, Phys. Rev. D 55 (1997) 5129 [hep-ph/9608319] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Catarina Cosme.

Additional information

ArXiv ePrint: 1802.09434

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cosme, C., Rosa, J.G. & Bertolami, O. Scale-invariant scalar field dark matter through the Higgs portal. J. High Energ. Phys. 2018, 129 (2018). https://doi.org/10.1007/JHEP05(2018)129

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM