Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Electroweak gauge boson parton distribution functions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 May 2018
  • Volume 2018, article number 106, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Electroweak gauge boson parton distribution functions
Download PDF
  • Bartosz Fornal  ORCID: orcid.org/0000-0003-3271-20801,
  • Aneesh V. Manohar1 &
  • Wouter J. Waalewijn  ORCID: orcid.org/0000-0001-5739-46272,3 
  • 425 Accesses

  • 33 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Transverse and longitudinal electroweak gauge boson parton distribution functions (PDFs) are computed in terms of deep-inelastic scattering structure functions, following the recently developed method to determine the photon PDF. The calculation provides initial conditions at the electroweak scale for PDF evolution to higher energies. Numerical results for the W ± and Z transverse, longitudinal and polarized PDFs, as well as the γZ transverse and polarized PDFs are presented.

Article PDF

Download to read the full article text

Similar content being viewed by others

Electroweak logarithms in inclusive cross sections

Article Open access 22 August 2018

Parton distributions and new physics searches: the Drell–Yan forward–backward asymmetry as a case study

Article Open access 22 December 2022

The impact of the LHC Z-boson transverse momentum data on PDF determinations

Article Open access 26 July 2017

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.
  • Experimental Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M.L. Mangano et al., Physics at a 100 TeV pp Collider: Standard Model Processes, CERN Yellow Report (2017) 1 [arXiv:1607.01831] [INSPIRE].

  2. M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak Bloch-Nordsieck violation at the TeV scale: ‘Strong’ weak interactions?, Nucl. Phys. B 589 (2000) 359 [hep-ph/0004071] [INSPIRE].

    Article  ADS  Google Scholar 

  4. C.W. Bauer, N. Ferland and B.R. Webber, Combining initial-state resummation with fixed-order calculations of electroweak corrections, JHEP 04 (2018) 125 [arXiv:1712.07147] [INSPIRE].

    Article  ADS  Google Scholar 

  5. C.W. Bauer, N. Ferland and B.R. Webber, Standard Model Parton Distributions at Very High Energies, JHEP 08 (2017) 036 [arXiv:1703.08562] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A.V. Manohar and W.J. Waalewijn, Electroweak Logarithms in Inclusive Cross Sections, arXiv:1802.08687 [INSPIRE].

  7. A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A.V. Manohar, P. Nason, G.P. Salam and G. Zanderighi, The Photon Content of the Proton, JHEP 12 (2017) 046 [arXiv:1708.01256] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M.S. Chanowitz and M.K. Gaillard, Multiple Production of W and Z as a Signal of New Strong Interactions, Phys. Lett. B 142 (1984) 85 [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Dawson, The Effective W Approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE].

    Article  ADS  Google Scholar 

  11. G.L. Kane, W.W. Repko and W.B. Rolnick, The Effective W ± , Z 0 Approximation for High-Energy Collisions, Phys. Lett. B 148 (1984) 367 [INSPIRE].

    Article  ADS  Google Scholar 

  12. J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].

    ADS  Google Scholar 

  13. R.L. Jaffe, Parton Distribution Functions for Twist Four, Nucl. Phys. B 229 (1983) 205 [INSPIRE].

    Article  ADS  Google Scholar 

  14. A.V. Manohar, Parton distributions from an operator viewpoint, Phys. Rev. Lett. 65 (1990) 2511 [INSPIRE].

    Article  ADS  Google Scholar 

  15. A.V. Manohar, Polarized parton distribution functions, Phys. Rev. Lett. 66 (1991) 289 [INSPIRE].

    Article  ADS  Google Scholar 

  16. Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  17. M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Bohm, A. Denner and H. Joos, Gauge theories of the strong and electroweak interaction, Teubner, Stuttgart, Germany (2001) [INSPIRE].

    Chapter  Google Scholar 

  19. J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Soft and Collinear Functions for the Standard Model, Phys. Rev. D 81 (2010) 014023 [arXiv:0909.0947] [INSPIRE].

    ADS  Google Scholar 

  20. J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].

    ADS  Google Scholar 

  21. M.B. Voloshin and V.I. Zakharov, Measuring QCD Anomalies in Hadronic Transitions Between Onium States, Phys. Rev. Lett. 45 (1980) 688 [INSPIRE].

    Article  ADS  Google Scholar 

  22. R.S. Chivukula, A.G. Cohen, H. Georgi, B. Grinstein and A.V. Manohar, Higgs Decay Into Goldstone Bosons, Annals Phys. 192 (1989) 93 [INSPIRE].

    Article  ADS  Google Scholar 

  23. E. Fermi, On the Theory of the impact between atoms and electrically charged particles, Z. Phys. 29 (1924) 315 [INSPIRE].

    Article  ADS  Google Scholar 

  24. C.F. von Weizsacker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612 [INSPIRE].

    Article  ADS  Google Scholar 

  25. E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729 [INSPIRE].

    Article  ADS  Google Scholar 

  26. NNPDF collaboration, V. Bertone et al., Illuminating the photon content of the proton within a global PDF analysis, arXiv:1712.07053 [INSPIRE].

  27. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D.B. Clark, E. Godat and F.I. Olness, ManeParse: A Mathematica reader for Parton Distribution Functions, Comput. Phys. Commun. 216 (2017) 126 [arXiv:1605.08012] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, U.S.A.

    Bartosz Fornal & Aneesh V. Manohar

  2. Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands

    Wouter J. Waalewijn

  3. Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Wouter J. Waalewijn

Authors
  1. Bartosz Fornal
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Aneesh V. Manohar
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Wouter J. Waalewijn
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Bartosz Fornal.

Additional information

ArXiv ePrint: 1803.06347

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornal, B., Manohar, A.V. & Waalewijn, W.J. Electroweak gauge boson parton distribution functions. J. High Energ. Phys. 2018, 106 (2018). https://doi.org/10.1007/JHEP05(2018)106

Download citation

  • Received: 09 April 2018

  • Accepted: 07 May 2018

  • Published: 16 May 2018

  • DOI: https://doi.org/10.1007/JHEP05(2018)106

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Deep Inelastic Scattering (Phenomenology)
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature