On exponentially suppressed corrections to BMPV black hole entropy

Abstract

The microscopic formula for the degeneracy of BMPV black hole microstates contains a series of exponentially suppressed corrections to the leading Bekenstein Hawking expression. We identify saddle points of the quantum entropy function for the BMPV black hole which are natural counterparts to these corrections and discuss the matching of leading and next-to-leading terms from the microscopic and macroscopic sides in a limit where the black hole charges are large.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory, Nucl. Phys. B 484 (1997) 543 [hep-th/9607026] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal type II string theory, hep-th/9903163 [INSPIRE].

  5. [5]

    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Asymptotic degeneracy of dyonic N = 4 string states and black hole entropy, JHEP 12(2004) 075[hep-th/0412287] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. [6]

    D. Shih, A. Strominger and X. Yin, Recounting dyons in N = 4 string theory, JHEP 10 (2006) 087 [hep-th/0505094] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. [7]

    D.P. Jatkar and A. Sen, Dyon spectrum in CHL models, JHEP 04 (2006) 018 [hep-th/0510147] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    A. Dabholkar and S. Nampuri, Spectrum of dyons and black holes in CHL orbifolds using Borcherds lift, JHEP 11 (2007) 077 [hep-th/0603066] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    J.R. David, D.P. Jatkar and A. Sen, Product representation of dyon partition function in CHL models, JHEP 06 (2006) 064 [hep-th/0602254] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    J.R. David, D.P. Jatkar and A. Sen, Dyon spectrum in N = 4 supersymmetric type II string theories, JHEP 11 (2006) 073 [hep-th/0607155] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    J.R. David and A. Sen, CHL dyons and statistical entropy function from D1-D5 system, JHEP 11 (2006) 072 [hep-th/0605210] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    J.R. David, D.P. Jatkar and A. Sen, Dyon spectrum in generic N = 4 supersymmetric Z N orbifolds, JHEP 01 (2007) 016 [hep-th/0609109] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    A. Sen, N = 8 dyon partition function and walls of marginal stability, JHEP 07 (2008) 118 [arXiv:0803.1014] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    A. Sen, Arithmetic of N = 8 black holes, JHEP 02 (2010) 090 [arXiv:0908.0039] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    I. Mandal and A. Sen, Black hole microstate counting and its macroscopic counterpart, Nucl. Phys. Proc. Suppl. 216 (2011) 147 [arXiv:1008.3801] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    A. Dabholkar and S. Nampuri, Quantum black holes, Lect. Notes Phys. 851 (2012) 165 [arXiv:1208.4814] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    P. Figueras, H.K. Kunduri, J. Lucietti and M. Rangamani, Extremal vacuum black holes in higher dimensions, Phys. Rev. D 78 (2008) 044042 [arXiv:0803.2998] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. [20]

    A. Sen, Quantum entropy function from AdS 2 /CFT 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    A. Sen, Arithmetic of quantum entropy function, JHEP 08 (2009) 068 [arXiv:0903.1477] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    A. Sen, Logarithmic corrections to N = 2 black hole entropy: an infrared window into the microstates, Gen. Rel. Grav. 44 (2012) 1207 [arXiv:1108.3842] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    R.K. Gupta, S. Lal and S. Thakur, Logarithmic corrections to extremal black hole entropy in N = 2, 4 and 8 supergravity, JHEP 11 (2014) 072 [arXiv:1402.2441] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP 06 (2011) 019 [arXiv:1012.0265] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    A. Dabholkar, J. Gomes and S. Murthy, Localization & exact holography, JHEP 04 (2013) 062 [arXiv:1111.1161] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    R.K. Gupta and S. Murthy, All solutions of the localization equations for N = 2 quantum black hole entropy, JHEP 02 (2013) 141 [arXiv:1208.6221] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    A. Dabholkar, J. Gomes and S. Murthy, Nonperturbative black hole entropy and Kloosterman sums, JHEP 03 (2015) 074 [arXiv:1404.0033] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    S. Murthy and V. Reys, Functional determinants, index theorems and exact quantum black hole entropy, JHEP 12 (2015) 028 [arXiv:1504.01400] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. [29]

    R.K. Gupta, Y. Ito and I. Jeon, Supersymmetric localization for BPS black hole entropy: 1-loop partition function from vector multiplets, JHEP 11 (2015) 197 [arXiv:1504.01700] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    S. Murthy and V. Reys, Single-centered black hole microstate degeneracies from instantons in supergravity, JHEP 04 (2016) 052 [arXiv:1512.01553] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. [31]

    J. Gomes, Quantum entropy and exact 4d/5d connection, JHEP 01 (2015) 109 [arXiv:1305.2849] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    J. Gomes, Exact holography and black hole entropy in N = 8 and N = 4 string theory, JHEP 07 (2017) 022 [arXiv:1511.07061] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    J. Gomes, Quantum black hole entropy, localization and the stringy exclusion principle, arXiv:1705.01953 [INSPIRE].

  34. [34]

    J. Gomes, Generalized Kloosterman sums from M2-branes, arXiv:1705.04348 [INSPIRE].

  35. [35]

    J. Gomes, U-duality invariant quantum entropy from sums of Kloosterman sums, arXiv:1709.06579 [INSPIRE].

  36. [36]

    N. Banerjee, D.P. Jatkar and A. Sen, Asymptotic expansion of the N = 4 dyon degeneracy, JHEP 05 (2009) 121 [arXiv:0810.3472] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    S. Banerjee, A. Sen and Y.K. Srivastava, Partition functions of torsion > 1 dyons in heterotic string theory on T 6, JHEP 05 (2008) 098 [arXiv:0802.1556] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    A. Dabholkar, J. Gomes and S. Murthy, Counting all dyons in N = 4 string theory, JHEP 05 (2011) 059 [arXiv:0803.2692] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    N. Banerjee, S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Supersymmetry, localization and quantum entropy function, JHEP 02 (2010) 091 [arXiv:0905.2686] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    R.K. Gupta, S. Lal and S. Thakur, Heat kernels on the AdS 2 cone and logarithmic corrections to extremal black hole entropy, JHEP 03 (2014) 043 [arXiv:1311.6286] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    S. Banerjee, R.K. Gupta and A. Sen, Logarithmic corrections to extremal black hole entropy from quantum entropy function, JHEP 03 (2011) 147 [arXiv:1005.3044] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Logarithmic corrections to N = 4 and N = 8 black hole entropy: a one loop test of quantum gravity, JHEP 11(2011) 143 [arXiv:1106.0080] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    A. Sen, Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions, JHEP 04 (2013) 156 [arXiv:1205.0971] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. [44]

    J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    S. Chaudhuri and J. Polchinski, Moduli space of CHL strings, Phys. Rev. D 52 (1995) 7168 [hep-th/9506048] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    S. Chaudhuri and D.A. Lowe, Type IIA heterotic duals with maximal supersymmetry, Nucl. Phys. B 459 (1996) 113 [hep-th/9508144] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    S. Chaudhuri, G. Hockney and J.D. Lykken, Maximally supersymmetric string theories in D < 10, Phys. Rev. Lett. 75 (1995) 2264 [hep-th/9505054] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    P.S. Aspinwall, Some relationships between dualities in string theory, Nucl. Phys. Proc. Suppl. 46 (1996) 30 [hep-th/9508154] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    N. Banerjee, I. Mandal and A. Sen, Black hole hair removal, JHEP 07 (2009) 091 [arXiv:0901.0359] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    A. Sen, Logarithmic corrections to rotating extremal black hole entropy in four and five dimensions, Gen. Rel. Grav. 44 (2012) 1947 [arXiv:1109.3706] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Black holes of D = 5 supergravity, Class. Quant. Grav. 16 (1999) 1 [hep-th/9810204] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    B. de Wit and S. Katmadas, Near-horizon analysis of D = 5 BPS black holes and rings, JHEP 02 (2010) 056 [arXiv:0910.4907] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  54. [54]

    A. Sen, State operator correspondence and entanglement in AdS 2 /CFT 1, Entropy 13 (2011) 1305 [arXiv:1101.4254] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    S. Bhattacharyya, A. Grassi, M. Mariño and A. Sen, A one-loop test of quantum supergravity, Class. Quant. Grav. 31 (2014) 015012 [arXiv:1210.6057] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [56]

    A. Dabholkar, J. Gomes, S. Murthy and A. Sen, Supersymmetric index from black hole entropy, JHEP 04 (2011) 034 [arXiv:1009.3226] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    D.P. Jatkar, A. Sen and Y.K. Srivastava, Black hole hair removal: non-linear analysis, JHEP 02 (2010) 038 [arXiv:0907.0593] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. [58]

    R. Camporesi, Harmonic analysis and propagators on homogeneous spaces, Phys. Rept. 196 (1990) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. [59]

    R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  60. [60]

    R. Camporesi and A. Higuchi, On the eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    R. Camporesi and A. Higuchi, The Plancherel measure for p-forms in real hyperbolic spaces, J. Geom. Phys. 15 (1994) 57.

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prithvi Narayan.

Additional information

ArXiv ePrint: 1710.10914

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lal, S., Narayan, P. On exponentially suppressed corrections to BMPV black hole entropy. J. High Energ. Phys. 2018, 32 (2018). https://doi.org/10.1007/JHEP05(2018)032

Download citation

Keywords

  • AdS-CFT Correspondence
  • Black Holes in String Theory
  • Extended Supersymmetry