Superrotation charge and supertranslation hair on black holes

  • Stephen W. Hawking
  • Malcolm J. Perry
  • Andrew Strominger
Open Access
Regular Article - Theoretical Physics


It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentum \( \overrightarrow{P} \), angular momentum \( \overrightarrow{J} \) and boost charge \( \overrightarrow{K} \), an infinite head of supertranslation hair. The distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with super-translation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. A leading-order Bondi-gauge expression is derived for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.


Black Holes Gauge Symmetry Nonperturbative Effects 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Hyun, S.-A. Park and S.-H. Yi, Quasi-local charges and asymptotic symmetry generators, JHEP 06 (2014) 151 [arXiv:1403.2196] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity, Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Campiglia and A. Laddha, New symmetries for the gravitational S-matrix, JHEP 04 (2015) 076 [arXiv:1502.02318] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP 07 (2015) 115 [arXiv:1505.05346] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D. Kapec, M. Pate and A. Strominger, New symmetries of QED, arXiv:1506.02906 [INSPIRE].
  10. [10]
    S.G. Avery and B.U.W. Schwab, Burg-Metzner-Sachs symmetry, string theory and soft theorems, Phys. Rev. D 93 (2016) 026003 [arXiv:1506.05789] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    M. Campiglia and A. Laddha, Asymptotic symmetries of gravity and soft theorems for massive particles, JHEP 12 (2015) 094 [arXiv:1509.01406] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    S.G. Avery and B.U.W. Schwab, Residual local supersymmetry and the soft gravitino, Phys. Rev. Lett. 116 (2016) 171601 [arXiv:1512.02657] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Lysov, Asymptotic fermionic symmetry from soft gravitino theorem, arXiv:1512.03015 [INSPIRE].
  14. [14]
    A. Strominger, Infrared structure of gravity and gauge theories, Physics 211r lecture videos online at, Harvard University, U.S.A., Spring 2016.
  15. [15]
    A. Ashtekar and R.O. Hansen, A unified treatment of null and spatial infinity in general relativity I — universal structure, asymptotic symmetries and conserved quantities at spatial infinity, J. Math. Phys. 19 (1978) 1542 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Ashtekar, Asymptotic quantization of the gravitational field, Phys. Rev. Lett. 46 (1981) 573 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Ashtekar and M. Streubel, Symplectic geometry of radiative modes and conserved quantities at null infinity, Proc. Roy. Soc. Lond. A 376 (1981) 585 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Ashtekar, Asymptotic quantization: based on 1984 Naples lectures, Bibliopolis, Naples Italy, (1987) [INSPIRE].
  19. [19]
    A.P. Balachandran and S. Vaidya, Spontaneous Lorentz violation in gauge theories, Eur. Phys. J. Plus 128 (2013) 118 [arXiv:1302.3406] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Pasterski, A. Strominger and A. Zhiboedov, New gravitational memories, JHEP 12 (2016) 053 [arXiv:1502.06120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.G. Avery and B.U.W. Schwab, Soft black hole absorption rates as conservation laws, JHEP 04 (2017) 053 [arXiv:1609.04397] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    P.T. Chrusciel, J. Lopes Costa and M. Heusler, Stationary black holes: uniqueness and beyond, Living Rev. Rel. 15 (2012) 7 [arXiv:1205.6112] [INSPIRE].CrossRefzbMATHGoogle Scholar
  25. [25]
    S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity S-matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    É. É. Flanagan and D.A. Nichols, Conserved charges of the extended Bondi-Metzner-Sachs algebra, Phys. Rev. D 95 (2017) 044002 [arXiv:1510.03386] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Compère and J. Long, Classical static final state of collapse with supertranslation memory, Class. Quant. Grav. 33 (2016) 195001 [arXiv:1602.05197] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    T. Banks, The super BMS algebra, scattering and holography, arXiv:1403.3420 [INSPIRE].
  30. [30]
    R.F. Penna, BMS invariance and the membrane paradigm, JHEP 03 (2016) 023 [arXiv:1508.06577] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    T.T. Dumitrescu, T. He, P. Mitra and A. Strominger, Infinite-dimensional fermionic symmetry in supersymmetric gauge theories, arXiv:1511.07429 [INSPIRE].
  32. [32]
    G. ’t Hooft, Black hole unitarity and antipodal entanglement, Found. Phys. 46 (2016) 1185 [arXiv:1601.03447] [INSPIRE].
  33. [33]
    A. Averin, G. Dvali, C. Gomez and D. Lüst, Gravitational black hole hair from event horizon supertranslations, JHEP 06 (2016) 088 [arXiv:1601.03725] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Barnich and C. Troessaert, Finite BMS transformations, JHEP 03 (2016) 167 [arXiv:1601.04090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    G. Compère and J. Long, Vacua of the gravitational field, JHEP 07 (2016) 137 [arXiv:1601.04958] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D.-C. Dai and D. Stojkovic, Pre-Hawking radiation may allow for reconstruction of the mass distribution of the collapsing object, Phys. Lett. B 758 (2016) 429 [arXiv:1601.07921] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Campoleoni, H.A. González, B. Oblak and M. Riegler, BMS modules in three dimensions, Int. J. Mod. Phys. A 31 (2016) 1650068 [arXiv:1603.03812] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    M.M. Sheikh-Jabbari and H. Yavartanoo, On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS 3 geometries, Eur. Phys. J. C 76 (2016) 493 [arXiv:1603.05272] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M.Z. Iofa, Density matrix of radiation of a black hole with a fluctuating horizon, Phys. Rev. D 94 (2016) 064044 [arXiv:1603.07480] [INSPIRE].ADSGoogle Scholar
  41. [41]
    D. Kapec, A.-M. Raclariu and A. Strominger, Area, entanglement entropy and supertranslations at null infinity, arXiv:1603.07706 [INSPIRE].
  42. [42]
    M.M. Sheikh-Jabbari, Residual diffeomorphisms and symplectic soft hairs: the need to refine strict statement of equivalence principle, Int. J. Mod. Phys. D 25 (2016) 1644019 [arXiv:1603.07862] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    A.M. Frassino, S. Köppel and P. Nicolini, Geometric model of black hole quantum N -portrait, extradimensions and thermodynamics, Entropy 18 (2016) 181 [arXiv:1604.03263] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Eling and Y. Oz, On the membrane paradigm and spontaneous breaking of horizon BMS symmetries, JHEP 07 (2016) 065 [arXiv:1605.00183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    E. Conde and P. Mao, Remarks on asymptotic symmetries and the subleading soft photon theorem, Phys. Rev. D 95 (2017) 021701 [arXiv:1605.09731] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G. Compère, Bulk supertranslation memories: a concept reshaping the vacua and black holes of general relativity, Int. J. Mod. Phys. D 25 (2016) 1644006 [arXiv:1606.00377] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    M. Hotta, J. Trevison and K. Yamaguchi, Gravitational memory charges of supertranslation and superrotation on Rindler horizons, Phys. Rev. D 94 (2016) 083001 [arXiv:1606.02443] [INSPIRE].ADSGoogle Scholar
  48. [48]
    P. Mao, X. Wu and H. Zhang, Soft hairs on isolated horizon implanted by electromagnetic fields, Class. Quant. Grav. 34 (2017) 055003 [arXiv:1606.03226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    M.R. Setare and H. Adami, The Heisenberg algebra as near horizon symmetry of the black flower solutions of Chern-Simons-like theories of gravity, Nucl. Phys. B 914 (2017) 220 [arXiv:1606.05260] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    D.-F. Zeng, Resolving the Schwarzschild singularity in both classic and quantum gravity, Nucl. Phys. B 917 (2017) 178 [arXiv:1606.06178] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Averin, G. Dvali, C. Gomez and D. Lüst, Goldstone origin of black hole hair from supertranslations and criticality, Mod. Phys. Lett. A 31 (2016) 1630045 [arXiv:1606.06260] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    H. Afshar, D. Grumiller and M.M. Sheikh-Jabbari, Black hole horizon fluffs: near horizon soft hairs as microstates of three dimensional black holes, arXiv:1607.00009 [INSPIRE].
  53. [53]
    M. Mirbabayi and M. Porrati, Dressed hard states and black hole soft hair, Phys. Rev. Lett. 117 (2016) 211301 [arXiv:1607.03120] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    D. Grumiller, A. Perez, S. Prohazka, D. Tempo and R. Troncoso, Higher spin black holes with soft hair, JHEP 10 (2016) 119 [arXiv:1607.05360] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    L. Donnay, G. Giribet, H.A. González and M. Pino, Extended symmetries at the black hole horizon, JHEP 09 (2016) 100 [arXiv:1607.05703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    P. Betzios, N. Gaddam and O. Papadoulaki, The black hole S-matrix from quantum mechanics, JHEP 11 (2016) 131 [arXiv:1607.07885] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    J.F.M. Delgado, C.A.R. Herdeiro and E. Radu, Violations of the Kerr and Reissner-Nordström bounds: horizon versus asymptotic quantities, Phys. Rev. D 94 (2016) 024006 [arXiv:1606.07900] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M.M. Sheikh-Jabbari and H. Yavartanoo, Horizon fluffs: near horizon soft hairs as microstates of generic AdS 3 black holes, Phys. Rev. D 95 (2017) 044007 [arXiv:1608.01293] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S. Carlip, The dynamics of supertranslations and superrotations in 2 + 1 dimensions, arXiv:1608.05088 [INSPIRE].
  60. [60]
    E. Gasperin and J.A.V. Kroon, Zero rest-mass fields and the Newman-Penrose constants on flat space, arXiv:1608.05716 [INSPIRE].
  61. [61]
    R.-G. Cai, S.-M. Ruan and Y.-L. Zhang, Horizon supertranslation and degenerate black hole solutions, JHEP 09 (2016) 163 [arXiv:1609.01056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    H.-P. Yan and W.-B. Liu, The third order correction on Hawking radiation and entropy conservation during black hole evaporation process, Phys. Lett. B 759 (2016) 293 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    F. Hopfmüller and L. Freidel, Gravity degrees of freedom on a null surface, arXiv:1611.03096 [INSPIRE].
  64. [64]
    R.J. Epp, The symplectic structure of general relativity in the double null (2 + 2) formalism, gr-qc/9511060 [INSPIRE].
  65. [65]
    P.R. Brady, S. Droz, W. Israel and S.M. Morsink, Covariant double null dynamics: (2 + 2) splitting of the Einstein equations, Class. Quant. Grav. 13 (1996) 2211 [gr-qc/9510040] [INSPIRE].
  66. [66]
    M. Parikh and F. Wilczek, An action for black hole membranes, Phys. Rev. D 58 (1998) 064011 [gr-qc/9712077] [INSPIRE].
  67. [67]
    M.P. Reisenberger, The symplectic 2-form for gravity in terms of free null initial data, Class. Quant. Grav. 30 (2013) 155022 [arXiv:1211.3880] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    K. Parattu, S. Chakraborty and T. Padmanabhan, Variational principle for gravity with null and non-null boundaries: a unified boundary counter-term, Eur. Phys. J. C 76 (2016) 129 [arXiv:1602.07546] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, A boundary term for the gravitational action with null boundaries, Gen. Rel. Grav. 48 (2016) 94 [arXiv:1501.01053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].ADSGoogle Scholar
  71. [71]
    G. Hayward, Gravitational action for space-times with nonsmooth boundaries, Phys. Rev. D 47 (1993) 3275 [INSPIRE].ADSGoogle Scholar
  72. [72]
    S.W. Hawking and C.J. Hunter, The gravitational Hamiltonian in the presence of nonorthogonal boundaries, Class. Quant. Grav. 13 (1996) 2735 [gr-qc/9603050] [INSPIRE].
  73. [73]
    Y. Neiman, Imaginary part of the gravitational action at asymptotic boundaries and horizons, Phys. Rev. D 88 (2013) 024037 [arXiv:1305.2207] [INSPIRE].ADSGoogle Scholar
  74. [74]
    K. Schoutens, H.L. Verlinde and E.P. Verlinde, Quantum black hole evaporation, Phys. Rev. D 48 (1993) 2670 [hep-th/9304128] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  75. [75]
    M. Hotta, K. Sasaki and T. Sasaki, Diffeomorphism on horizon as an asymptotic isometry of Schwarzschild black hole, Class. Quant. Grav. 18 (2001) 1823 [gr-qc/0011043] [INSPIRE].
  76. [76]
    J.-I. Koga, Asymptotic symmetries on Killing horizons, Phys. Rev. D 64 (2001) 124012 [gr-qc/0107096] [INSPIRE].
  77. [77]
    M. Hotta, Holographic charge excitations on horizontal boundary, Phys. Rev. D 66 (2002) 124021 [hep-th/0206222] [INSPIRE].ADSMathSciNetGoogle Scholar
  78. [78]
    A. Ashtekar, J. Engle, T. Pawlowski and C. Van Den Broeck, Multipole moments of isolated horizons, Class. Quant. Grav. 21 (2004) 2549 [gr-qc/0401114] [INSPIRE].
  79. [79]
    W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett. 114 (2015) 111603 [arXiv:1412.1895] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev. D 94 (2016) 104053 [arXiv:1506.05792] [INSPIRE].ADSGoogle Scholar
  81. [81]
    D. Harlow, Wormholes, emergent gauge fields and the weak gravity conjecture, JHEP 01 (2016) 122 [arXiv:1510.07911] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, Prog. Theor. Exp. Phys. 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  83. [83]
    D. Harlow, The Ryu-Takayanagi formula from quantum error correction, arXiv:1607.03901 [INSPIRE].
  84. [84]
    F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
  85. [85]
    G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS (CNCFG2010) 010 [Ann. U. Craiova Phys. 21 (2011) S11] [arXiv:1102.4632] [INSPIRE].
  87. [87]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    T. Mädler and J. Winicour, Bondi-Sachs formalism, Scholarpedia 11 (2016) 33528 [arXiv:1609.01731] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    P.T. Chrusciel, M.A.H. MacCallum and D.B. Singleton, Gravitational waves in general relativity: 14. Bondi expansions and the polyhomogeneity of Scri, gr-qc/9305021 [INSPIRE].
  91. [91]
    P.T. Chrusciel and T.-T. Paetz, Characteristic initial data and smoothness of Scri I. Framework and results, Annales Henri Poincaré 16 (2015) 2131 [arXiv:1403.3558] [INSPIRE].
  92. [92]
    D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton University Press, Princeton U.S.A., (1993) [INSPIRE].zbMATHGoogle Scholar
  93. [93]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].
  94. [94]
    R.K. Sachs, Gravitational waves in general relativity 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].
  95. [95]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav. 32 (2015) 055003 [arXiv:1406.1462] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    C.D. White, Diagrammatic insights into next-to-soft corrections, Phys. Lett. B 737 (2014) 216 [arXiv:1406.7184] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  98. [98]
    Z. Bern, S. Davies and J. Nohle, On loop corrections to subleading soft behavior of gluons and gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].ADSGoogle Scholar
  99. [99]
    F. Cachazo and E.Y. Yuan, Are soft theorems renormalized?, arXiv:1405.3413 [INSPIRE].
  100. [100]
    S. He, Y.-T. Huang and C. Wen, Loop corrections to soft theorems in gauge theories and gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-energy behavior of gluons and gravitons from gauge invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].ADSGoogle Scholar
  102. [102]
    J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] [INSPIRE].ADSGoogle Scholar
  103. [103]
    J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Local contributions to factorized soft graviton theorems at loop level, Phys. Lett. B 746 (2015) 293 [arXiv:1411.2230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  104. [104]
    D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, A 2D stress tensor for 4D gravity, arXiv:1609.00282 [INSPIRE].
  105. [105]
    C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP 01 (2017) 112 [arXiv:1609.00732] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  106. [106]
    T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys. 88 (1974) 286 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  107. [107]
    R. Beig and N. oMurchadha, The Poincaré group as the symmetry group of canonical general relativity, Annals Phys. 174 (1987) 463 [INSPIRE].
  108. [108]
    R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical structure and definition of energy in general relativity, Phys. Rev. 116 (1959) 1322 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  109. [109]
    R.K. Sachs, Gravitational waves in general relativity 6. The outgoing radiation condition, Proc. Roy. Soc. Lond. A 264 (1961) 309 [INSPIRE].
  110. [110]
    R. Penrose, Conformal treatment of infinity, Gordon and Breach, London U.K., (1964), reprinted in Gen. Rel. Grav. 43 (2011) 901 [INSPIRE].
  111. [111]
    D. Christodoulou, The global initial value problem in general relativity, in Proceedings of the Ninth Marcel Grossman Meeting on General Relativity, V. Gurzadyan, R. Jantzen and R. Ruffini eds., World Scientific, Singapore, (2002), pg. 44.Google Scholar
  112. [112]
    M. Dafermos, The formation of black holes in general relativity,
  113. [113]
    H. Friedrich, On purely radiative space-times, Commun. Math. Phys. 103 (1986) 35 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  114. [114]
    C.X. Habisohn, Massless scalar fields at null and spatial infinity in the Schwarzschild space-time, J. Math. Phys. 30 (1989) 1103 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  115. [115]
    J. Corvino and R.M. Schoen, On the asymptotics for the vacuum Einstein constraint equations, J. Diff. Geom. 73 (2006) 185 [gr-qc/0301071] [INSPIRE].
  116. [116]
    T.N. Palmer, Covariant conservation equations and their relation to the energy-momentum concept in general relativity, Phys. Rev. D 18 (1978) 4399 [INSPIRE].ADSMathSciNetGoogle Scholar
  117. [117]
    S.G. Avery and B.U.W. Schwab, Noether’s second theorem and Ward identities for gauge symmetries, JHEP 02 (2016) 031 [arXiv:1510.07038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  118. [118]
    C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical theories, in Three hundred years of gravitation, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K., (1986), pg. 676 [INSPIRE].
  119. [119]
    R.M. Wald and A. Zoupas, A general definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].
  120. [120]
    P.-N. Chen, L.-H. Huang, M.-T. Wang and S.-T. Yau, On the validity of the definition of angular momentum in general relativity, Annales Henri Poincaré 17 (2016) 253 [arXiv:1401.0597] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  121. [121]
    A. Strominger and A. Zhiboedov, Superrotations and black hole pair creation, Class. Quant. Grav. 34 (2017) 064002 [arXiv:1610.00639] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  122. [122]
    R. Penrose, The geometry of impulsive gravitational waves, in General relativity, papers in honour of J.L. Synge, L. O’Raifeartaigh ed., Clarendon Press, Oxford U.K., (1972), pg. 101 [INSPIRE].
  123. [123]
    A. Ashtekar and T. Dray, On the existence of solutions to Einstein’s equation with nonzero Bondi news, Commun. Math. Phys. 79 (1981) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  124. [124]
    M. Campiglia and A. Laddha, Sub-subleading soft gravitons: new symmetries of quantum gravity?, Phys. Lett. B 764 (2017) 218 [arXiv:1605.09094] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  125. [125]
    M. Campiglia and A. Laddha, Subleading soft photons and large gauge transformations, JHEP 11 (2016) 012 [arXiv:1605.09677] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  126. [126]
    J. de Boer and S.N. Solodukhin, A holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  127. [127]
    T. Banks, A critique of pure string theory: heterodox opinions of diverse dimensions, hep-th/0306074 [INSPIRE].
  128. [128]
    L. Donnay, G. Giribet, H.A. González and M. Pino, Supertranslations and superrotations at the black hole horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    C. Barrabes and W. Israel, Thin shells in general relativity and cosmology: the lightlike limit, Phys. Rev. D 43 (1991) 1129 [INSPIRE].ADSMathSciNetGoogle Scholar
  130. [130]
    M. Blau and M. O’Loughlin, Horizon shells and BMS-like soldering transformations, JHEP 03 (2016) 029 [arXiv:1512.02858] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  131. [131]
    M. Blau and M. O’Loughlin, Horizon shells: classical structure at the horizon of a black hole, Int. J. Mod. Phys. D 25 (2016) 1644010 [arXiv:1604.01181] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  132. [132]
    A. Ashtekar and M. Streubel, Symplectic geometry of radiative modes and conserved quantities at null infinity, Proc. Roy. Soc. Lond. A 376 (1981) 585 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  133. [133]
    G.J. Zuckerman, Action principles and global geometry, Conf. Proc. C 8607214 (1986) 259 [INSPIRE].Google Scholar
  134. [134]
    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  135. [135]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  136. [136]
    B.S. DeWitt, Quantum theory of gravity 1. The canonical theory, Phys. Rev. 160 (1967) 1113 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Stephen W. Hawking
    • 1
  • Malcolm J. Perry
    • 1
  • Andrew Strominger
    • 2
  1. 1.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeU.K.
  2. 2.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.

Personalised recommendations