Skip to main content

Supersymmetric many-body systems from partial symmetries — integrability, localization and scrambling

A preprint version of the article is available at arXiv.

Abstract

Partial symmetries are described by generalized group structures known as symmetric inverse semigroups. We use the algebras arising from these structures to realize supersymmetry in (0+1) dimensions and to build many-body quantum systems on a chain. This construction consists in associating appropriate supercharges to chain sites, in analogy to what is done in spin chains. For simple enough choices of supercharges, we show that the resulting states have a finite non-zero Witten index, which is invariant under perturbations, therefore defining supersymmetric phases of matter protected by the index. The Hamiltonians we obtain are integrable and display a spectrum containing both product and entangled states. By introducing disorder and studying the out-of-time-ordered correlators (OTOC), we find that these systems are in the many-body localized phase and do not thermalize. Finally, we reformulate a theorem relating the growth of the second Rényi entropy to the OTOC on a thermal state in terms of partial symmetries.

References

  1. E.P. Wigner, Gruppentheorie (in German), Vieweg, Berlin Germany (1931) [Group Theory, Academic Press Inc., New York U.S.A. (1959)].

  2. M.V. Lawson, Inverse Semigroups — The Theory of Partial Symmetries, World Scientific, Singapore (1998).

  3. J. Kellendonk and M.V. Lawson, Tiling Semigroups, J. Algebra 224 (2000) 140.

    MathSciNet  Article  MATH  Google Scholar 

  4. D.P. Di Vincenzo and P.J. Steinhardt, Quasicrystals: The State of the Art, World Scientific, Singapore (1991).

  5. C. Janot, Quasicrystals — A Primer, Clarendon Press, Oxford U.K. (1992).

  6. M. Senechal, Quasicrystals and Geometry, Cambridge University Press, Cambridge U.K. (1995).

  7. B. Unal et al., Nucleation and growth of Ag islands on fivefold Al-Pd-Mn quasicrystal surfaces: Dependence of island density on temperature and flux, Phys. Rev. B 75 (2007) 064205.

    ADS  Article  Google Scholar 

  8. R. Exel, D. Goncalves and C. Starling, The tiling C -algebra viewed as a tight inverse semigroup algebra, arXiv:1106.4535.

  9. J. Kellendonk, The Local structure of tilings and their integer group of coinvariants, Commun. Math. Phys. 187 (1997) 115 [cond-mat/9508010] [INSPIRE].

  10. J. Kellendonk, Topological equivalence of tilings, J. Math. Phys. 38 (1997) 1823 [cond-mat/9609254].

  11. D. Damanik, A. Gorodetski and W. Yessen, The Fibonacci Hamiltonian, arXiv:1403.7823.

  12. J. Bellissard, A. Bovier and J.-M. Ghez, Gap Labelling Theorems for One Dimensional Discrete Schrodinger Operators, Rev. Math. Phys. 4 (1992) 1.

    MathSciNet  Article  MATH  Google Scholar 

  13. J. Kellendonk, Non Commutative Geometry of Tilings and Gap Labelling, cond-mat/9403065 [INSPIRE].

  14. V.V. Wagner, The theory of generalised heaps and generalised groups, Mat. Sb. (N.S.) 32 (1953) 545.

  15. G.B. Preston, Representations of inverse semi-groups, J. London Math. Soc. 29 (1954) 411.

    MathSciNet  Article  MATH  Google Scholar 

  16. Yu. A. Golfand and E.P. Likhtman, Extension of the Algebra of Poincaré Group Generators and Violation of p Invariance, JETP Lett. 13 (1971) 323 [INSPIRE].

    ADS  Google Scholar 

  17. P. Ramond, Dual Theory for Free Fermions, Phys. Rev. D 3 (1971) 2415 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. A. Neveu and J.H. Schwarz, Factorizable dual model of pions, Nucl. Phys. B 31 (1971) 86 [INSPIRE].

    ADS  Article  Google Scholar 

  19. D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].

  20. J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].

  21. M.F. Sohnius, Introducing Supersymmetry, Phys. Rept. 128 (1985) 39 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  23. F. Cooper and B. Freedman, Aspects of Supersymmetric Quantum Mechanics, Annals Phys. 146 (1983) 262 [INSPIRE].

  24. F. Cooper, A. Khare and U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rept. 251 (1995) 267 [hep-th/9405029] [INSPIRE].

  25. E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. O. Buerschaper, J.M. Mombelli, M. Christandl and M. Aguado, A hierarchy of topological tensor network states, J. Math. Phys. 54 (2013) 012201 [arXiv:1007.5283].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].

    ADS  Article  Google Scholar 

  28. M.J.B. Ferreira, P. Padmanabhan and P. Teotonio-Sobrinho, 2D Quantum Double Models From a 3D Perspective, J. Phys. A 47 (2014) 375204 [arXiv:1310.8483] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  29. M.F. Atiyah and I.M. Singer, The index of elliptic operators on compact manifolds, Bull. Am. Math. Soc. 69 (1963) 422.

    MathSciNet  Article  MATH  Google Scholar 

  30. M. Atiyah, R. Bott and V.K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973) 279.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. R. Melrose, The Atiyah-Patodi-Singer Index Theorem, Taylor and Francis, London U.K. (1993).

  32. F. Gesztesy and B. Simon, Topological Invariance of the Witten Index, J. Funct. Anal. 79 (1988) 91.

    MathSciNet  Article  MATH  Google Scholar 

  33. K. Aghababaei Samani and A. Mostafazadeh, Quantum mechanical symmetries and topological invariants, Nucl. Phys. B 595 (2001) 467 [hep-th/0007008] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. S.M. Girvin, A.H. MacDonald, M.P.A. Fisher, S.-J. Rey and J.P. Sethna, Exactly soluble model of fractional statistics, Phys. Rev. Lett. 65 (1990) 1671 [INSPIRE].

    ADS  Article  Google Scholar 

  35. G. Junker, Supersymmetric Methods in Quantum and Statistical Physics, Springer-Verlag, Heidelberg Germany (1996).

  36. H. Nicolai, Supersymmetry and Spin Systems, J. Phys. A 9 (1976) 1497 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. H. Moriya, On Supersymmetric Fermion Lattice Systems, Ann. Henri Poincaré 17 (2016) 2199.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. P.H. Dondi and H. Nicolai, Lattice Supersymmetry, Nuovo Cim. A 41 (1977) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. C. Hagendorf, Spin chains with dynamical lattice supersymmetry, J. Stat. Phys. 150 (2013) 609 [arXiv:1207.0357] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. N. Ilieva, H. Narnhofer and W.E. Thirring, Supersymmetric models for fermions on a lattice, Fortsch. Phys. 54 (2006) 124 [quant-ph/0502100] [INSPIRE].

  41. J. de Gier, G.Z. Feher, B. Nienhuis and M. Rusaczonek, Integrable supersymmetric chain without particle conservation, J. Stat. Mech. 1602 (2016) 023104 [arXiv:1510.02520] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  42. H. Saleur and N.P. Warner, Lattice models and N = 2 supersymmetry, hep-th/9311138 [INSPIRE].

  43. P. Fendley, K. Schoutens and B. Nienhuis, Lattice fermion models with supersymmetry, J. Phys. A 36 (2003) 12399 [cond-mat/0307338] [INSPIRE].

  44. L. Huijse and B. Swingle, Area law violations in a supersymmetric model, Phys. Rev. B 87 (2013) 035108 [arXiv:1202.2367] [INSPIRE].

  45. S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004 [arXiv:1511.04021] [INSPIRE].

  47. Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  48. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888.

    ADS  Google Scholar 

  51. P.W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109 (1958) 1492 [INSPIRE].

    ADS  Article  Google Scholar 

  52. R. Nandkishore and D.A. Huse, Many body localization and thermalization in quantum statistical mechanics, Ann. Rev. Condensed Matter Phys. 6 (2015) 15 [arXiv:1404.0686] [INSPIRE].

    ADS  Article  Google Scholar 

  53. B. Swingle and D. Chowdhury, Slow scrambling in disordered quantum systems, Phys. Rev. B 95 (2017) 060201 [arXiv:1608.03280] [INSPIRE].

  54. R. Fan, P. Zhang, H. Shen and H. Zhai, Out-of-Time-Order Correlation for Many-Body Localization, arXiv:1608.01914 [INSPIRE].

  55. Y. Huang, Y.-L. Zhang and X. Chen, Out-of-Time-Ordered Correlator in Many-Body Localized Systems, arXiv:1608.01091 [INSPIRE].

  56. Y. Chen, Quantum Logarithmic Butterfly in Many Body Localization, arXiv:1608.02765 [INSPIRE].

  57. X. Chen, T. Zhou, D.A. Huse and E. Fradkin, Out-of-time-order correlations in many-body localized and thermal phases, arXiv:1610.00220 [INSPIRE].

  58. A. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. JETP 28 (1969) 1200.

    ADS  Google Scholar 

  59. J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.

    ADS  Article  Google Scholar 

  60. H. Tasaki, From Quantum Dynamics to the Canonical Distribution: General Picture and a Rigorous Example, Phys. Rev. Lett. 80 (1998) 1373 [cond-mat/9707253].

  61. M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452 (2008) 854 [arXiv:0708.1324].

    ADS  Article  Google Scholar 

  62. H. Kim, T.N. Ikeda, D.A. Huse, Testing whether all eigenstates obey the Eigenstate Thermalization Hypothesis, Phys. Rev. E 90 (2014) 052105 [arXiv:1408.0535].

    ADS  Google Scholar 

  63. E. Altman and R. Vosk, Universal dynamics and renormalization in many body localized systems, Ann. Rev. Condens. Matter Phys. 6 (2015) 383 [arXiv:1408.2834].

    ADS  Article  Google Scholar 

  64. M. Serbyn, Z. Papić and D.A. Abanin, Local conservation laws and the structure of the many-body localized states, Phys. Rev. Lett. 111 (2013) 127201 [arXiv:1305.5554].

    ADS  Article  Google Scholar 

  65. D.A. Huse, R. Nandkishore and V. Oganesyan, Phenomenology of fully many-body-localized systems, Phys. Rev. B 90 (2014) 174202 [arXiv:1408.4297] [INSPIRE].

    ADS  Article  Google Scholar 

  66. R. Vosk and E. Altman, Many-body localization in one dimension as a dynamical renormalization group fixed point, Phys. Rev. Lett. 110 (2013) 067204 [arXiv:1205.0026].

    ADS  Article  Google Scholar 

  67. A. Das, Supersymmetry and Finite Temperature, Physics A 158 (1989) 1.

    ADS  Google Scholar 

  68. S. Iyer, V. Oganesyan, G. Refael and D.A. Huse, Many-Body Localization in a Quasiperiodic System, Phys. Rev. B 87 (2013) 134202 [arXiv:1212.4159].

    ADS  Article  Google Scholar 

  69. S. Nag and A. Garg, Many-body mobility edge in a quasi periodic system, arXiv:1701.00236.

  70. S. Aubry and G. Andrè, Analyticity Breaking and Anderson Localization in incommensurate lattices, Ann. Israel Phys. Soc. 3 (1980) 133.

    MathSciNet  MATH  Google Scholar 

  71. A. Kitaev, A simple model of quantum holography, talks at the KITP 2015, Santa Barbara U.S.A. (2015).

  72. W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].

    ADS  Google Scholar 

  73. T. Li, J. Liu, Y. Xin and Y. Zhou, Supersymmetric SYK model and random matrix theory, arXiv:1702.01738 [INSPIRE].

  74. L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, hep-th/9605187 [INSPIRE].

  75. H. Moriya, Breakdown of ergodicity induced by infinitely many local kinematical supercharges for the Nicolai supersymmetric fermion lattice model, arXiv:1610.09142 [INSPIRE].

  76. P. Fendley, K. Schoutens and J. de Boer, Lattice models with N = 2 supersymmetry, Phys. Rev. Lett. 90 (2003) 120402 [hep-th/0210161] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  77. V.A. Rubakov and V.P. Spiridonov, Parasupersymmetric Quantum Mechanics, Mod. Phys. Lett. A 3 (1988) 1337 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  78. J. Beckers and N. Debergh, On parasupersymmetry and remarkable Lie structures, J. Phys . A 23 (1990) L751S.

  79. A Khare, Parasupersymmetric quantum mechanics of arbitrary order, J. Phys. A 25 (1992) L749.

    ADS  MathSciNet  MATH  Google Scholar 

  80. M. Stosic and R. Picken, Parasupersymmetric Quantum Mechanics of Order 3 and a Generalized Witten Index, Mod. Phys. Lett. A 20 (2005) 1395 [math-ph/0407019].

  81. A. Mostafazadeh, Parasupersymmetric quantum mechanics and indices of Fredholm operators, Int. J. Mod. Phys. A 12 (1997) 2725 [hep-th/9603163] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  82. A. Mostafazadeh, Spectrum degeneracy of general (p = 2) parasupersymmetric quantum mechanics and parasupersymmetric topological invariants, Int. J. Mod. Phys. A 11 (1996) 1057 [hep-th/9410180] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Trancanelli.

Additional information

ArXiv ePrint: 1702.02091

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Padmanabhan, P., Rey, SJ., Teixeira, D. et al. Supersymmetric many-body systems from partial symmetries — integrability, localization and scrambling. J. High Energ. Phys. 2017, 136 (2017). https://doi.org/10.1007/JHEP05(2017)136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2017)136

Keywords

  • Discrete Symmetries
  • Extended Supersymmetry
  • Lattice Integrable Models
  • Random Systems