Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The component structure of conformal supergravity invariants in six dimensions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 24 May 2017
  • Volume 2017, article number 133, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The component structure of conformal supergravity invariants in six dimensions
Download PDF
  • Daniel Butter1,2,
  • Joseph Novak3 &
  • Gabriele Tartaglino-Mazzucchelli4 
  • 508 Accesses

  • 30 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In the recent paper arXiv:1606.02921, the two invariant actions for 6D \( \mathcal{N}=\left(1,0\right) \) conformal supergravity were constructed in superspace, corresponding to the supersymmetrization of C 3 and C□C. In this paper, we provide the translation from superspace to the component formulation of superconformal tensor calculus, and we give the full component actions of these two invariants. As a second application, we build the component form for the supersymmetric F□F action coupled to conformal supergravity. Exploiting the fact that the \( \mathcal{N}=\left(2,0\right) \) Weyl multiplet has a consistent truncation to \( \mathcal{N}=\left(1,0\right) \), we then verify that there is indeed only a single \( \mathcal{N}=\left(2,0\right) \) conformal supergravity invariant and reconstruct most of its bosonic terms by uplifting a certain linear combination of \( \mathcal{N}=\left(1,0\right) \) invariants.

Article PDF

Download to read the full article text

Similar content being viewed by others

Invariants for minimal conformal supergravity in six dimensions

Article Open access 15 December 2016

Symmetries of \( \mathcal{N} \) = (1, 0) supergravity backgrounds in six dimensions

Article Open access 16 March 2021

\( \mathcal{N} \) = 2 conformal supergravity in five dimensions

Article Open access 03 July 2024
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Beccaria and A.A. Tseytlin, Conformal a-anomaly of some non-unitary 6d superconformal theories, JHEP 09 (2015) 017 [arXiv:1506.08727] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  4. I.L. Buchbinder, N.G. Pletnev and A.A. Tseytlin, “Induced” N = 4 conformal supergravity, Phys. Lett. B 717 (2012) 274 [arXiv:1209.0416] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Butter, F. Ciceri, B. de Wit and B. Sahoo, All N = 4 Conformal Supergravities, Phys. Rev. Lett. 118 (2017) 081602 [arXiv:1609.09083] [INSPIRE].

    Article  ADS  Google Scholar 

  6. F. Bastianelli, S. Frolov and A.A. Tseytlin, Conformal anomaly of (2,0) tensor multiplet in six-dimensions and AdS/CFT correspondence, JHEP 02 (2000) 013 [hep-th/0001041] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Kulaxizi and A. Parnachev, Supersymmetry Constraints in Holographic Gravities, Phys. Rev. D 82 (2010) 066001 [arXiv:0912.4244] [INSPIRE].

    ADS  Google Scholar 

  8. M. Beccaria and A.A. Tseytlin, Conformal anomaly c-coefficients of superconformal 6d theories, JHEP 01 (2016) 001 [arXiv:1510.02685] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Butter, S.M. Kuzenko, J. Novak and S. Theisen, Invariants for minimal conformal supergravity in six dimensions, JHEP 12 (2016) 072 [arXiv:1606.02921] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Butter, N=1 Conformal Superspace in Four Dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. D. Butter, N=2 Conformal Superspace in Four Dimensions, JHEP 10 (2011) 030 [arXiv:1103.5914] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: New off-shell formulation, JHEP 09 (2013) 072 [arXiv:1305.3132] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: New approach and applications, JHEP 02 (2015) 111 [arXiv:1410.8682] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. J. Wess and B. Zumino, Superspace Formulation of Supergravity, Phys. Lett. B 66 (1977) 361 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Grimm, J. Wess and B. Zumino, Consistency Checks on the Superspace Formulation of Supergravity, Phys. Lett. B 73 (1978) 415 [INSPIRE].

    Article  ADS  Google Scholar 

  16. W. Siegel, Solution to Constraints in Wess-Zumino Supergravity Formalism, Nucl. Phys. B 142 (1978) 301 [INSPIRE].

    Article  ADS  Google Scholar 

  17. W. Siegel and S.J. Gates, Jr., Superfield Supergravity, Nucl. Phys. B 147 (1979) 77 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. P.S. Howe and R.W. Tucker, Scale Invariance in Superspace, Phys. Lett. B 80 (1978) 138 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Grimm, Solution of the Bianchi identities in SU(2) extended superspace with constraints, in Unification of the Fundamental Particle Interactions, S. Ferrara, J. Ellis and P. van Nieuwenhuizen eds., Plenum Press, New York U.S.A. (1980), pp. 509-523.

  20. P.S. Howe, A superspace approach to extended conformal supergravity, Phys. Lett. B 100 (1981) 389 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. P.S. Howe, Supergravity in Superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, 4D N = 2 Supergravity and Projective Superspace, JHEP 09 (2008) 051 [arXiv:0805.4683] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with central charges and Killing spinors in (2+1)-dimensions, Nucl. Phys. B 467 (1996) 183 [hep-th/9505032] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity, JHEP 04 (2008) 032 [arXiv:0802.3953] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. W.D. Linch, III and G. Tartaglino-Mazzucchelli, Six-dimensional Supergravity and Projective Superfields, JHEP 08 (2012) 075 [arXiv:1204.4195] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: Off-shell actions, JHEP 10 (2013) 073 [arXiv:1306.1205] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. D. Butter, B. de Wit, S.M. Kuzenko and I. Lodato, New higher-derivative invariants in N = 2 supergravity and the Gauss-Bonnet term, JHEP 12(2013) 062 [arXiv:1307.6546] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. D. Butter, B. de Wit and I. Lodato, Non-renormalization theorems and N = 2 supersymmetric backgrounds, JHEP 03 (2014) 131 [arXiv:1401.6591] [INSPIRE].

    Article  ADS  Google Scholar 

  30. E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal Tensor Calculus and Matter Couplings in Six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].

  31. M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of Conformal Supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation Rules of N = 2 Supergravity Multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).

  34. E. Bergshoeff, A. Salam and E. Sezgin, A Supersymmetric R 2 Action in Six-dimensions and Torsion, Phys. Lett. B 173 (1986) 73 [INSPIRE].

    Article  ADS  Google Scholar 

  35. E. Bergshoeff, A. Salam and E. Sezgin, Supersymmetric R 2 Actions, Conformal Invariance and Lorentz Chern-Simons Term in Six-dimensions and Ten-dimensions, Nucl. Phys. B 279 (1987) 659 [INSPIRE].

    Article  ADS  Google Scholar 

  36. E. Bergshoeff and M. Rakowski, An Off-shell Superspace R(2) Action in Six-dimensions, Phys. Lett. B 191 (1987) 399 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. F. Coomans and A. Van Proeyen, Off-shell N = (1, 0), D = 6 supergravity from superconformal methods, JHEP 02 (2011) 049 [Erratum ibid. 01 (2012) 119] [arXiv:1101.2403] [INSPIRE].

  38. E. Bergshoeff, F. Coomans, E. Sezgin and A. Van Proeyen, Higher Derivative Extension of 6D Chiral Gauged Supergravity, JHEP 07 (2012) 011 [arXiv:1203.2975] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. E.A. Ivanov, A.V. Smilga and B.M. Zupnik, Renormalizable supersymmetric gauge theory in six dimensions, Nucl. Phys. B 726 (2005) 131 [hep-th/0505082] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. L. Baulieu, M.P. Bellon and R. Grimm, BRS Symmetry of Supergravity in Superspace and Its Projection to Component Formalism, Nucl. Phys. B 294 (1987) 279 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: A Geometric formulation, Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. F. Brandt, Counterpart of the Weyl tensor for Rarita-Schwinger type fields, Phys. Lett. B 767 (2017) 347 [arXiv:1612.03532] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. C. Arias, W.D. Linch, III and A.K. Ridgway, Superforms in six-dimensional superspace, JHEP 05 (2016) 016 [arXiv:1402.4823] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. S.M. Kuzenko, J. Novak and I.B. Samsonov, The anomalous current multiplet in 6D minimal supersymmetry, JHEP 02 (2016) 132 [arXiv:1511.06582] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. S.J. Gates, Jr., Ectoplasm has no topology: the prelude, in Supersymmetries and Quantum Symmetries, J. Wess and E.A. Ivanov eds., Springer, Berlin (1999), p. 46 [hep-th/9709104] [INSPIRE].

  47. S.J. Gates, Jr., Ectoplasm has no topology, Nucl. Phys. B 541 (1999) 615 [hep-th/9809056] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. S.J. Gates, Jr., M.T. Grisaru, M.E. Knutt-Wehlau and W. Siegel, Component actions from curved superspace: Normal coordinates and ectoplasm, Phys. Lett. B 421 (1998) 203 [hep-th/9711151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. L. Castellani, R. D’Auria and P. Fre, Supergravity and superstrings: a geometric perspective. Volume 2: Supergravity, World Scientific, Singapore (1991), pp. 680-684.

  50. G. Girardi and R. Grimm, N=1 supergravity: Topological classes and superspace geometry in four-dimensions, Phys. Lett. B 260 (1991) 365 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. M.F. Hasler, The Three form multiplet in N = 2 superspace, Eur. Phys. J. C 1 (1998) 729 [hep-th/9606076] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. K. Peeters, A Field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs/0608005] [INSPIRE].

  53. K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].

  54. W. Siegel, Superfields in Higher Dimensional Space-time, Phys. Lett. B 80 (1979) 220 [INSPIRE].

    Article  ADS  Google Scholar 

  55. E. Bergshoeff, E. Sezgin and A. Van Proeyen, (2,0) tensor multiplets and conformal supergravity in D = 6, Class. Quant. Grav. 16 (1999) 3193 [hep-th/9904085] [INSPIRE].

  56. H. Lü, Y. Pang and C.N. Pope, Conformal Gravity and Extensions of Critical Gravity, Phys. Rev. D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].

    ADS  Google Scholar 

  57. Y. Pang, One-Loop Divergences in 6D Conformal Gravity, Phys. Rev. D 86 (2012) 084039 [arXiv:1208.0877] [INSPIRE].

    ADS  Google Scholar 

  58. H. Lü, Y. Pang and C.N. Pope, Black Holes in Six-dimensional Conformal Gravity, Phys. Rev. D 87 (2013) 104013 [arXiv:1301.7083] [INSPIRE].

    ADS  Google Scholar 

  59. P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in Six-Dimensions, Nucl. Phys. B 221 (1983) 331 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. J. Koller, A six-dimensional superspace approach to extended superfields, Nucl. Phys. B 222 (1983) 319 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. M. Ozkan and Y. Pang, All off-shell R 2 invariants in five dimensional \( \mathcal{N}=2 \) supergravity, JHEP 08 (2013) 042 [arXiv:1306.1540] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. E. Sokatchev, Off-shell Six-dimensional Supergravity in Harmonic Superspace, Class. Quant. Grav. 5 (1988) 1459 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. M. Ozkan, Supersymmetric curvature squared invariants in five and six dimensions, Ph.D. Thesis, Texas A&M University (2013) [http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/151223/OZKAN-DISSERTATION-2013.pdf?sequence=1].

  64. J. Grundberg and U. Lindström, Actions for Linear Multiplets in Six-dimensions, Class. Quant. Grav. 2 (1985) L33 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. H. Nishino and S.J. Gates, Jr., Manifestly supersymmetric extensions of (curvature) 2 -terms in six-dimensional N = 2 supergravity, Phys. Lett. B 173 (1986) 417 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. S.J. Gates, Jr., Superconformal Transformations and Six-dimensional Space-time, Nucl. Phys. B 162 (1980) 79 [INSPIRE].

    Article  ADS  Google Scholar 

  67. B.E.W. Nilsson, Superspace Action for a Six-dimensional Nonextended Supersymmetric Yang-Mills Theory, Nucl. Phys. B 174 (1980) 335 [INSPIRE].

    Article  ADS  Google Scholar 

  68. J. Wess, Supersymmetric gauge theories, in proceedings of the 5th Johns Hopkins Workshop on Current Problems in Particle Theory: Unified Field Theories and Beyond, Baltimore, Maryland, 25-27 May 1981.

  69. P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in Six-Dimensions, Nucl. Phys. B 221 (1983) 331 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. S.J. Gates, Jr. and W. Siegel, Understanding Constraints in Superspace Formulations of Supergravity, Nucl. Phys. B 163 (1980) 519 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. M. Awada, P.K. Townsend and G. Sierra, Six-dimensional Simple and Extended Chiral Supergravity in Superspace, Class. Quant. Grav. 2 (1985) L85 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Nikhef Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Daniel Butter

  2. George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX, 77843, U.S.A.

    Daniel Butter

  3. Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476, Golm, Germany

    Joseph Novak

  4. Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium

    Gabriele Tartaglino-Mazzucchelli

Authors
  1. Daniel Butter
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Joseph Novak
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Gabriele Tartaglino-Mazzucchelli
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Daniel Butter.

Additional information

ArXiv ePrint: 1701.08163

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Full component expressions for 6D (1,0) invariants. (PDF 244 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butter, D., Novak, J. & Tartaglino-Mazzucchelli, G. The component structure of conformal supergravity invariants in six dimensions. J. High Energ. Phys. 2017, 133 (2017). https://doi.org/10.1007/JHEP05(2017)133

Download citation

  • Received: 15 March 2017

  • Accepted: 20 April 2017

  • Published: 24 May 2017

  • DOI: https://doi.org/10.1007/JHEP05(2017)133

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • Supergravity Models
  • Superspaces
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature