A hybrid setup for fundamental unknowns in neutrino oscillations using T2HK (ν) and μ-DAR \( \left(\overline{\nu}\right) \)

  • Sanjib Kumar Agarwalla
  • Monojit Ghosh
  • Sushant K. Raut
Open Access
Regular Article - Theoretical Physics

Abstract

Neutrino mass hierarchy, CP-violation, and octant of θ23 are the fundamental unknowns in neutrino oscillations. In order to address all these three unknowns, we study the physics reach of a setup, where we replace the antineutrino run of T2HK with antineutrinos from muon decay at rest (μ-DAR). This approach has the advantages of having higher statistics in both neutrino and antineutrino modes, and lower beam-on backgrounds for antineutrino run with reduced systematics. We find that a hybrid setup consisting of T2HK (ν) and μ-DAR \( \left(\overline{\nu}\right) \) in conjunction with full exposure from T2K and NOνA can resolve the issue of mass hierarchy at greater than 3σ C.L. irrespective of the choices of hierarchy, δCP, and θ23. This hybrid setup can also establish the CP-violation at 5σ C.L. for ∼ 55% choices of δCP, whereas the same for conventional T2HK \( \left(\nu + \overline{\nu}\right) \) setup along with T2K and NOνA is around 30%. As far as the octant of θ23 is concerned, this hybrid setup can exclude the wrong octant at 5σ C.L. if θ23 is at least 3° away from maximal mixing for any δCP.

Keywords

Neutrino Physics CP violation 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
  4. [4]
    SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].
  5. [5]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].
  6. [6]
    S.F. King, Unified models of neutrinos, flavour and CP-violation, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.F. King, Models of neutrino mass, mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. de Gouvêa, Neutrino mass models, Ann. Rev. Nucl. Part. Sci. 66 (2016) 197 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Altarelli, Status of neutrino mass and mixing, Int. J. Mod. Phys. A 29 (2014) 1444002 [arXiv:1404.3859] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Gehrlein, A. Merle and M. Spinrath, Predictivity of neutrino mass sum rules, Phys. Rev. D 94 (2016) 093003 [arXiv:1606.04965] [INSPIRE].ADSGoogle Scholar
  11. [11]
    I. Girardi, S.T. Petcov, A.J. Stuart and A.V. Titov, Leptonic Dirac CP-violation predictions from residual discrete symmetries, Nucl. Phys. B 902 (2016) 1 [arXiv:1509.02502] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing solar lepton mixing sum rules in neutrino oscillation experiments, JHEP 12 (2014) 122 [arXiv:1410.7573] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I. Girardi, S.T. Petcov and A.V. Titov, Determining the Dirac CP-violation phase in the neutrino mixing matrix from sum rules, Nucl. Phys. B 894 (2015) 733 [arXiv:1410.8056] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    C.H. Albright and M.-C. Chen, Model predictions for neutrino oscillation parameters, Phys. Rev. D 74 (2006) 113006 [hep-ph/0608137] [INSPIRE].
  15. [15]
    F. Capozzi et al., Global constraints on absolute neutrino masses and their ordering, arXiv:1703.04471 [INSPIRE].
  16. [16]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [INSPIRE].
  18. [18]
    T2K collaboration, K. Abe et al., The T2K experiment, Nucl. Instrum. Meth. A 659 (2011) 106 [arXiv:1106.1238] [INSPIRE].
  19. [19]
    D. Ayres et al., Letter of intent to build an off-axis detector to study ν μν e oscillations with the NuMI neutrino beam, hep-ex/0210005 [INSPIRE].
  20. [20]
    NOvA collaboration, D.S. Ayres et al., NOvA: proposal to build a 30 kiloton off-axis detector to study ν μν e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].
  21. [21]
    NOvA collaboration, D.S. Ayres et al., The NOvA technical design report, FERMILAB-DESIGN-2007-01 (2007) [INSPIRE].
  22. [22]
    P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP-violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044 [arXiv:0907.1896] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Prakash, S.K. Raut and S.U. Sankar, Getting the best out of T2K and NOvA, Phys. Rev. D 86 (2012) 033012 [arXiv:1201.6485] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S.K. Agarwalla, S. Prakash, S.K. Raut and S.U. Sankar, Potential of optimized NOvA for large θ 13 & combined performance with a LArTPC & T2K, JHEP 12 (2012) 075 [arXiv:1208.3644] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Can atmospheric neutrino experiments provide the first hint of leptonic CP-violation?, Phys. Rev. D 89 (2014) 011301 [arXiv:1306.2500] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P.A.N. Machado, H. Minakata, H. Nunokawa and R. Zukanovich Funchal, What can we learn about the lepton CP phase in the next 10 years?, JHEP 05 (2014) 109 [arXiv:1307.3248] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Evidence for leptonic CP phase from NOνA, T2K and ICAL: a chronological progression, Nucl. Phys. B 884 (2014) 274 [arXiv:1401.7243] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T2K collaboration, K. Abe et al., Neutrino oscillation physics potential of the T2K experiment, Prog. Theor. Exp. Phys. 2015 (2015) 043C01 [arXiv:1409.7469] [INSPIRE].
  29. [29]
    S.K. Agarwalla, S.S. Chatterjee, A. Dasgupta and A. Palazzo, Discovery potential of T2K and NOvA in the presence of a light sterile neutrino, JHEP 02 (2016) 111 [arXiv:1601.05995] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.K. Agarwalla, S. Prakash and S.U. Sankar, Resolving the octant of θ 23 with T2K and NOvA, JHEP 07 (2013) 131 [arXiv:1301.2574] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Chatterjee, P. Ghoshal, S. Goswami and S.K. Raut, Octant sensitivity for large θ 13 in atmospheric and long-baseline neutrino experiments, JHEP 06 (2013) 010 [arXiv:1302.1370] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G.J. Feldman, J. Hartnell and T. Kobayashi, Long-baseline neutrino oscillation experiments, Adv. High Energy Phys. 2013 (2013) 475749 [arXiv:1210.1778] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    K. Abe et al., Letter of intent: the Hyper-Kamiokande experiment — detector design and physics potential, arXiv:1109.3262 [INSPIRE].
  34. [34]
    Hyper-Kamiokande Working Group, K. Abe et al., A long baseline neutrino oscillation experiment using J-PARC neutrino beam and Hyper-Kamiokande, arXiv:1412.4673 [INSPIRE].
  35. [35]
    P. Coloma, A. Donini, E. Fernandez-Martinez and P. Hernández, Precision on leptonic mixing parameters at future neutrino oscillation experiments, JHEP 06 (2012) 073 [arXiv:1203.5651] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large θ 13, Phys. Rev. D 87 (2013) 033004 [arXiv:1209.5973] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Blennow, P. Coloma and E. Fernandez-Martinez, Reassessing the sensitivity to leptonic CP-violation, JHEP 03 (2015) 005 [arXiv:1407.3274] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Fukasawa, M. Ghosh and O. Yasuda, Complementarity between Hyper-Kamiokande and DUNE in determining neutrino oscillation parameters, Nucl. Phys. B 918 (2017) 337 [arXiv:1607.03758] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Ballett, S.F. King, S. Pascoli, N.W. Prouse and T. Wang, Sensitivities and synergies of DUNE and T2HK, arXiv:1612.07275 [INSPIRE].
  40. [40]
    J. Liao, D. Marfatia and K. Whisnant, Nonstandard neutrino interactions at DUNE, T2HK and T2HKK, JHEP 01 (2017) 071 [arXiv:1612.01443] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Ghosh and O. Yasuda, Effect of systematics in T2HK, T2HKK and DUNE, arXiv:1702.06482 [INSPIRE].
  42. [42]
    S.K. Raut, T2HK and T2HKK: does more matter matter?, arXiv:1703.07136 [INSPIRE].
  43. [43]
    S.K. Agarwalla, P. Huber, J.M. Link and D. Mohapatra, A new approach to anti-neutrino running in long baseline neutrino oscillation experiments, JHEP 04 (2011) 099 [arXiv:1005.4055] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Alonso et al., Expression of interest for a novel search for CP-violation in the neutrino sector: DAEdALUS, arXiv:1006.0260 [INSPIRE].
  45. [45]
    J. Evslin, S.-F. Ge and K. Hagiwara, The leptonic CP phase from T2(H)K and μ + decay at rest, JHEP 02 (2016) 137 [arXiv:1506.05023] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J.M. Conrad and M.H. Shaevitz, Multiple cyclotron method to search for CP-violation in the neutrino sector, Phys. Rev. Lett. 104 (2010) 141802 [arXiv:0912.4079] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Hyper-Kamiokande proto-collaboration, K. Abe et al., Physics potentials with the second Hyper-Kamiokande detector in Korea, arXiv:1611.06118 [INSPIRE].
  48. [48]
    A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731] [hep-ph/0002108] [INSPIRE].
  49. [49]
    M. Freund, P. Huber and M. Lindner, Systematic exploration of the neutrino factory parameter space including errors and correlations, Nucl. Phys. B 615 (2001) 331 [hep-ph/0105071] [INSPIRE].
  50. [50]
    E.K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].
  51. [51]
    S.K. Agarwalla, Y. Kao and T. Takeuchi, Analytical approximation of the neutrino oscillation matter effects at large θ 13, JHEP 04 (2014) 047 [arXiv:1302.6773] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Ghosh, S. Goswami and S.K. Raut, Implications of δ CP = −90° towards determining hierarchy and octant at T2K and T2K-II, Mod. Phys. Lett. A 32 (2017) 1750034 [arXiv:1409.5046] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Ghosh, P. Ghoshal, S. Goswami, N. Nath and S.K. Raut, New look at the degeneracies in the neutrino oscillation parameters and their resolution by T2K, NOνA and ICAL, Phys. Rev. D 93 (2016) 013013 [arXiv:1504.06283] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Ghosh, Reason for T2K to run in dominant neutrino mode for detecting CP-violation, Phys. Rev. D 93 (2016) 073003 [arXiv:1512.02226] [INSPIRE].ADSGoogle Scholar
  55. [55]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
  56. [56]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  57. [57]
    E.A. Paschos and J.Y. Yu, Neutrino interactions in oscillation experiments, Phys. Rev. D 65 (2002) 033002 [hep-ph/0107261] [INSPIRE].
  58. [58]
    M.D. Messier, Evidence for neutrino mass from observations of atmospheric neutrinos with Super-Kamiokande, Ph.D. Thesis, Boston University (1999) [INSPIRE].
  59. [59]
    T2K collaboration, K. Abe et al., Combined analysis of neutrino and antineutrino oscillations at T2K, Phys. Rev. Lett. 118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].
  60. [60]
    NOvA collaboration, P. Adamson et al., Constraints on oscillation parameters from ν e appearance and ν μ disappearance in NOvA, arXiv:1703.03328 [INSPIRE].
  61. [61]
    E. Ciuffoli, J. Evslin and X. Zhang, Confidence in a neutrino mass hierarchy determination, JHEP 01 (2014) 095 [arXiv:1305.5150] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Blennow, On the Bayesian approach to neutrino mass ordering, JHEP 01 (2014) 139 [arXiv:1311.3183] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J. Elevant and T. Schwetz, On the determination of the leptonic CP phase, JHEP 09 (2015) 016 [arXiv:1506.07685] [INSPIRE].CrossRefGoogle Scholar
  65. [65]
    K.N. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].
  66. [66]
    A. Palazzo, Phenomenology of light sterile neutrinos: a brief review, Mod. Phys. Lett. A 28 (2013) 1330004 [arXiv:1302.1102] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li and E.M. Zavanin, Light sterile neutrinos, J. Phys. G 43 (2016) 033001 [arXiv:1507.08204] [INSPIRE].ADSGoogle Scholar
  68. [68]
    C. Giunti, Light sterile neutrinos: status and perspectives, Nucl. Phys. B 908 (2016) 336 [arXiv:1512.04758] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sanjib Kumar Agarwalla
    • 1
    • 2
  • Monojit Ghosh
    • 3
  • Sushant K. Raut
    • 4
    • 5
  1. 1.Institute of PhysicsBhubaneswarIndia
  2. 2.Homi Bhabha National Institute, Training School ComplexMumbaiIndia
  3. 3.Department of PhysicsTokyo Metropolitan UniversityHachiojiJapan
  4. 4.Department of Theoretical Physics, School of Engineering SciencesKTH Royal Institute of Technology, AlbaNova University CenterStockholmSweden
  5. 5.Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)DaejeonKorea

Personalised recommendations