Notes on the Wess-Zumino-Witten-like structure: L triplet and NS-NS superstring field theory

  • Hiroaki MatsunagaEmail author
Open Access
Regular Article - Theoretical Physics


In the NS-NS sector of superstring field theory, there potentially exist three nilpotent generators of gauge transformations and two constraint equations: it makes the gauge algebra of type II theory somewhat complicated. In this paper, we show that every NS-NS actions have their WZW-like forms, and that a triplet of mutually commutative L products completely determines the gauge structure of NS-NS superstring field theory via its WZW-like structure. We give detailed analysis about it and present its characteristic properties by focusing on two NS-NS actions proposed by [1] and [2].


String Field Theory Superstrings and Heterotic Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Goto and H. Matsunaga, A /L structure and alternative action for WZW-like superstring field theory, JHEP 01 (2017) 022 [arXiv:1512.03379] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Erler, S. Konopka and I. Sachs, NS-NS sector of closed superstring field theory, JHEP 08 (2014) 158 [arXiv:1403.0940] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439] [hep-th/9503099] [INSPIRE].
  4. [4]
    T. Erler, S. Konopka and I. Sachs, Resolving Witten’s superstring field theory, JHEP 04 (2014) 150 [arXiv:1312.2948] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Berkovits, A New approach to superstring field theory, Fortsch. Phys. 48 (2000) 31 [hep-th/9912121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Y. Okawa and B. Zwiebach, Heterotic string field theory, JHEP 07 (2004) 042 [hep-th/0406212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Matsunaga, Construction of a gauge-invariant action for type II superstring field theory, arXiv:1305.3893 [INSPIRE].
  9. [9]
    H. Matsunaga, Nonlinear gauge invariance and WZW-like action for NS-NS superstring field theory, JHEP 09 (2015) 011 [arXiv:1407.8485] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Sen, BV master action for heterotic and type II string field theories, JHEP 02 (2016) 087 [arXiv:1508.05387] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Saroja and A. Sen, Picture changing operators in closed fermionic string field theory, Phys. Lett. B 286 (1992) 256 [hep-th/9202087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    B. Jurčo and K. Muenster, Type II superstring field theory: geometric approach and operadic description, JHEP 04 (2013) 126 [arXiv:1303.2323] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    E. Witten, Interacting field theory of open superstrings, Nucl. Phys. B 276 (1986) 291 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    C. Wendt, Scattering amplitudes and contact interactions in Witten’s superstring field theory, Nucl. Phys. B 314 (1989) 209 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    C. Schubert, The Finite gauge transformations in closed string field theory, Lett. Math. Phys. 26 (1992) 259 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. Kunitomo and Y. Okawa, Complete action for open superstring field theory, PTEP 2016 (2016) 023B01 [arXiv:1508.00366] [INSPIRE].
  18. [18]
    K. Goto and H. Kunitomo, Construction of action for heterotic string field theory including the Ramond sector, JHEP 12 (2016) 157 [arXiv:1606.07194] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    H. Matsunaga, Comments on complete actions for open superstring field theory, JHEP 11 (2016) 115 [arXiv:1510.06023] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    T. Erler, Y. Okawa and T. Takezaki, A structure from the Berkovits formulation of open superstring field theory, arXiv:1505.01659 [INSPIRE].
  21. [21]
    T. Erler, Relating Berkovits and A superstring field theories; small Hilbert space perspective, JHEP 10 (2015) 157 [arXiv:1505.02069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    T. Erler, Relating Berkovits and A superstring field theories; large Hilbert space perspective, JHEP 02 (2016) 121 [arXiv:1510.00364] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    K. Goto and H. Matsunaga, On-shell equivalence of two formulations for superstring field theory, arXiv:1506.06657 [INSPIRE].
  24. [24]
    T. Erler, Wess-Zumino-Witten-like actions in superstring field theory, in preparation.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute of Physics, the Czech Academy of SciencesPrague 8Czech Republic
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations