Probing lepton flavor violation at the 13 TeV LHC

  • Reinard Primulando
  • Patipan UttayaratEmail author
Open Access
Regular Article - Theoretical Physics


We investigate the bounds on tau-mu lepton flavor violation (LFV). Our main focus is on the collider constrains on tau-mu LFV. We use the Type-III Two-Higgs-Doublet-Model (2HDM) as a set up for our study. While the LFV branching fraction of the 125 GeV is well constrained by current LHC searches, the heavier neutral states could have a large branching fraction to tau and muon. We estimate the LHC reach for the 13 TeV center of mass energy with 300 fb−1 luminosity for a neutral boson decaying into a tau and a muon. We identify parts of the LFV parameter space where the searches for heavy scalar and pseudoscalar decaying into a tau and a muon are more sensitive than the similar search for the 125 GeV boson.


Beyond Standard Model Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Banerjee, B. Bhattacherjee, M. Mitra and M. Spannowsky, The lepton flavour violating Higgs decays at the HL-LHC and the ILC, JHEP 07 (2016) 059 [arXiv:1603.05952] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Search for lepton-flavour-violating decays of the Higgs and Z bosons with the ATLAS detector, Eur. Phys. J. C 77 (2017) 70 [arXiv:1604.07730] [INSPIRE].
  4. [4]
    CMS collaboration, Search for lepton-flavour-violating decays of the Higgs boson, Phys. Lett. B 749 (2015) 337 [arXiv:1502.07400] [INSPIRE].
  5. [5]
    ATLAS collaboration, Search for lepton-flavour-violating Hμτ decays of the Higgs boson with the ATLAS detector, JHEP 11 (2015) 211 [arXiv:1508.03372] [INSPIRE].
  6. [6]
    CMS collaboration, Search for lepton flavour violating decays of the Higgs boson in the μ-τ final state at 13 TeV, CMS-PAS-HIG-16-005, CERN, Geneva Switzerland, (2016).
  7. [7]
    J.L. Diaz-Cruz and J.J. Toscano, Lepton flavor violating decays of Higgs bosons beyond the Standard Model, Phys. Rev. D 62 (2000) 116005 [hep-ph/9910233] [INSPIRE].
  8. [8]
    J.L. Diaz-Cruz, D.K. Ghosh and S. Moretti, Lepton flavour violating heavy Higgs decays within the νMSSM and their detection at the LHC, Phys. Lett. B 679 (2009) 376 [arXiv:0809.5158] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [INSPIRE].
  10. [10]
    T. Fukuyama, H. Sugiyama and K. Tsumura, Constraints from muon g − 2 and LFV processes in the Higgs triplet model, JHEP 03 (2010) 044 [arXiv:0909.4943] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Ishiwata and M.B. Wise, Phenomenology of heavy vectorlike leptons, Phys. Rev. D 88 (2013) 055009 [arXiv:1307.1112] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Falkowski, D.M. Straub and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, JHEP 05 (2014) 092 [arXiv:1312.5329] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Feruglio, P. Paradisi and A. Pattori, Lepton flavour violation in composite Higgs models, Eur. Phys. J. C 75 (2015) 579 [arXiv:1509.03241] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Lami and P. Roig, Hℓℓin the simplest little Higgs model, Phys. Rev. D 94 (2016) 056001 [arXiv:1603.09663] [INSPIRE].ADSGoogle Scholar
  15. [15]
    B. Yang, J. Han and N. Liu, Lepton flavor violating Higgs boson decay hμτ in the littlest Higgs model with T parity, Phys. Rev. D 95 (2017) 035010 [arXiv:1605.09248] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Sher and K. Thrasher, Flavor changing leptonic decays of heavy Higgs bosons, Phys. Rev. D 93 (2016) 055021 [arXiv:1601.03973] [INSPIRE].ADSGoogle Scholar
  17. [17]
    W. Altmannshofer, J. Eby, S. Gori, M. Lotito, M. Martone and D. Tuckler, Collider signatures of flavorful Higgs bosons, Phys. Rev. D 94 (2016) 115032 [arXiv:1610.02398] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Buschmann, J. Kopp, J. Liu and X.-P. Wang, New signatures of flavor violating Higgs couplings, JHEP 06 (2016) 149 [arXiv:1601.02616] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  21. [21]
    E.A. Paschos, Diagonal neutral currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Georgi and D.V. Nanopoulos, Suppression of flavor changing effects from neutral spinless meson exchange in gauge theories, Phys. Lett. B 82 (1979) 95 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  25. [25]
    P.S. Bhupal Dev and A. Pilaftsis, Maximally symmetric two Higgs doublet model with natural Standard Model alignment, JHEP 12 (2014) 024 [Erratum ibid. 11 (2015) 147] [arXiv:1408.3405] [INSPIRE].
  26. [26]
    A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D 87 (2013) 094031 [arXiv:1303.5877] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  28. [28]
    A. Efrati, J.F. Kamenik and Y. Nir, The phenomenology of the di-photon excess and hτμ within 2HDM, arXiv:1606.07082 [INSPIRE].
  29. [29]
    Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  30. [30]
    A. Celis, V. Cirigliano and E. Passemar, Model-discriminating power of lepton flavor violating τ decays, Phys. Rev. D 89 (2014) 095014 [arXiv:1403.5781] [INSPIRE].ADSGoogle Scholar
  31. [31]
    ATLAS collaboration, Search for Higgs bosons decaying into di-muon in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-041, CERN, Geneva Switzerland, (2016).
  32. [32]
    W. Altmannshofer, J. Brod and M. Schmaltz, Experimental constraints on the coupling of the Higgs boson to electrons, JHEP 05 (2015) 125 [arXiv:1503.04830] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y. Soreq, H.X. Zhu and J. Zupan, Light quark Yukawa couplings from Higgs kinematics, JHEP 12 (2016) 045 [arXiv:1606.09621] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    F. Yu, Phenomenology of enhanced light quark Yukawa couplings and the W ± h charge asymmetry, JHEP 02 (2017) 083 [arXiv:1609.06592] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  37. [37]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  38. [38]
    ATLAS collaboration, Z. Marshall, Simulation of pile-up in the ATLAS experiment, J. Phys. Conf. Ser. 513 (2014) 022024 [INSPIRE].
  39. [39]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  40. [40]
    F. Mahmoudi and O. Stål, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].
  41. [41]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  42. [42]
    S. Dawson et al., Working group report: Higgs boson, in Proceedings, Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A., 29 July–6 August 2013 [arXiv:1310.8361] [INSPIRE].
  43. [43]
    G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev. D 92 (2015) 033016 [arXiv:1503.00290] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Kopp and M. Nardecchia, Flavor and CP-violation in Higgs decays, JHEP 10 (2014) 156 [arXiv:1406.5303] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Djouadi, The anatomy of electro-weak symmetry breaking II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  46. [46]
    D. Chang, W.S. Hou and W.-Y. Keung, Two loop contributions of flavor changing neutral Higgs bosons to μ, Phys. Rev. D 48 (1993) 217 [hep-ph/9302267] [INSPIRE].
  47. [47]
    A. Celis, V. Cirigliano and E. Passemar, Lepton flavor violation in the Higgs sector and the role of hadronic τ-lepton decays, Phys. Rev. D 89 (2014) 013008 [arXiv:1309.3564] [INSPIRE].ADSGoogle Scholar
  48. [48]
    Belle collaboration, Y. Miyazaki et al., Search for lepton-flavor-violating τ decays into a lepton and a vector meson, Phys. Lett. B 699 (2011) 251 [arXiv:1101.0755] [INSPIRE].

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Center for Theoretical Physics, Department of PhysicsParahyangan Catholic UniversityBandungIndonesia
  2. 2.Department of PhysicsSrinakharinwirot UniversityBangkokThailand

Personalised recommendations