Skip to main content

Light weakly coupled axial forces: models, constraints, and projections

A preprint version of the article is available at arXiv.


We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevance of the allowed parameter space to low-energy anomalies in π0 and 8Be decay.


  1. L.B. Okun, Limits of electrodynamics: paraphotons?, Sov. Phys. JETP 56 (1982) 502 [INSPIRE].

    Google Scholar 

  2. B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    ADS  Article  Google Scholar 

  3. J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E 6 models, Phys. Rept. 183 (1989) 193 [INSPIRE].

    ADS  Article  Google Scholar 

  4. S. Khalil, Low scale B-L extension of the Standard Model at the LHC, J. Phys. G 35 (2008) 055001 [hep-ph/0611205] [INSPIRE].

  5. S. Khalil and A. Masiero, Radiative B-L symmetry breaking in supersymmetric models, Phys. Lett. B 665 (2008) 374 [arXiv:0710.3525] [INSPIRE].

    ADS  Article  Google Scholar 

  6. W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μ -L τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].

    ADS  Google Scholar 

  7. W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].

    ADS  Article  Google Scholar 

  8. E. Ma, Gauged B-3L τ and radiative neutrino masses, Phys. Lett. B 433 (1998) 74 [hep-ph/9709474] [INSPIRE].

  9. H.-S. Lee and S. Yun, Mini force: the (BL) + xY gauge interaction with a light mediator, Phys. Rev. D 93 (2016) 115028 [arXiv:1604.01213] [INSPIRE].

    ADS  Google Scholar 

  10. C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B 683 (2004) 219 [hep-ph/0305261] [INSPIRE].

  11. C. Boehm, D. Hooper, J. Silk, M. Casse and J. Paul, MeV dark matter: has it been detected?, Phys. Rev. Lett. 92 (2004) 101301 [astro-ph/0309686] [INSPIRE].

  12. C. Boehm, Implications of a new light gauge boson for neutrino physics, Phys. Rev. D 70 (2004) 055007 [hep-ph/0405240] [INSPIRE].

  13. J.L. Feng et al., Protophobic fifth-force interpretation of the observed anomaly in 8 Be nuclear transitions, Phys. Rev. Lett. 117 (2016) 071803 [arXiv:1604.07411] [INSPIRE].

    ADS  Article  Google Scholar 

  14. Y. Kahn, M. Schmitt and T.M.P. Tait, Enhanced rare pion decays from a model of MeV dark matter, Phys. Rev. D 78 (2008) 115002 [arXiv:0712.0007] [INSPIRE].

    ADS  Google Scholar 

  15. A.E. Dorokhov and M.A. Ivanov, Rare decay π 0e + e : theory confronts KTeV data, Phys. Rev. D 75 (2007) 114007 [arXiv:0704.3498] [INSPIRE].

    ADS  Google Scholar 

  16. KTeV collaboration, E. Abouzaid et al., Measurement of the rare decay π 0e + e , Phys. Rev. D 75 (2007) 012004 [hep-ex/0610072] [INSPIRE].

  17. P. Masjuan and P. Sanchez-Puertas, Phenomenology of bivariate approximants: the π 0e + e case and its impact on the electron and muon g − 2, arXiv:1504.07001 [INSPIRE].

  18. P. Masjuan and P. Sanchez-Puertas, η and η decays into lepton pairs, JHEP 08 (2016) 108 [arXiv:1512.09292] [INSPIRE].

  19. A.J. Krasznahorkay et al., Observation of anomalous internal pair creation in 8 Be: a possible indication of a light, neutral boson, Phys. Rev. Lett. 116 (2016) 042501 [arXiv:1504.01527] [INSPIRE].

    ADS  Article  Google Scholar 

  20. J.L. Feng et al., Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev. D 95 (2017) 035017 [arXiv:1608.03591] [INSPIRE].

    ADS  Google Scholar 

  21. K. Harigaya and Y. Nomura, Light chiral dark sector, Phys. Rev. D 94 (2016) 035013 [arXiv:1603.03430] [INSPIRE].

    ADS  Google Scholar 

  22. F.C. Correia and S. Fajfer, Restrained dark U(1) d at low energies, Phys. Rev. D 94 (2016) 115023 [arXiv:1609.00860] [INSPIRE].

    ADS  Google Scholar 

  23. H. Davoudiasl, H.-S. Lee and W.J. Marciano, ‘Dark’ Z implications for parity violation, rare meson decays and Higgs physics, Phys. Rev. D 85 (2012) 115019 [arXiv:1203.2947] [INSPIRE].

    ADS  Google Scholar 

  24. H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon anomaly and dark parity violation, Phys. Rev. Lett. 109 (2012) 031802 [arXiv:1205.2709] [INSPIRE].

    ADS  Article  Google Scholar 

  25. H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon g − 2, rare kaon decays and parity violation from dark bosons, Phys. Rev. D 89 (2014) 095006 [arXiv:1402.3620] [INSPIRE].

    ADS  Google Scholar 

  26. CMS collaboration, Search for vector-like charge 2/3 T quarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 012003 [arXiv:1509.04177] [INSPIRE].

  27. P. Fayet, U-boson production in e + e annihilations, ψ and Y decays and Light Dark Matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].

  28. S.G. Porsev, K. Beloy and A. Derevianko, Precision determination of electroweak coupling from atomic parity violation and implications for particle physics, Phys. Rev. Lett. 102 (2009) 181601 [arXiv:0902.0335] [INSPIRE].

    ADS  Article  Google Scholar 

  29. SLAC E158 collaboration, P.L. Anthony et al., Precision measurement of the weak mixing angle in Moller scattering, Phys. Rev. Lett. 95 (2005) 081601 [hep-ex/0504049] [INSPIRE].

  30. S. Bilmis, I. Turan, T.M. Aliev, M. Deniz, L. Singh and H.T. Wong, Constraints on dark photon from neutrino-electron scattering experiments, Phys. Rev. D 92 (2015) 033009 [arXiv:1502.07763] [INSPIRE].

    ADS  Google Scholar 

  31. Y.S. Jeong, C.S. Kim and H.-S. Lee, Constraints on the U(1) L gauge boson in a wide mass range, Int. J. Mod. Phys. A 31 (2016) 1650059 [arXiv:1512.03179] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].

    ADS  Article  Google Scholar 

  33. TEXONO collaboration, M. Deniz et al., Measurement of \( {\overline{\nu}}_e-e \) scattering cross-section with a CsI(Tl) scintillating crystal array at the Kuo-Sheng nuclear power reactor, Phys. Rev. D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].

  34. CHARM-II collaboration, P. Vilain et al., Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [INSPIRE].

  35. NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π 0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].

  36. J. Blumlein et al., Limits on neutral light scalar and pseudoscalar particles in a proton beam dump experiment, Z. Phys. C 51 (1991) 341 [INSPIRE].

    Google Scholar 

  37. CHARM collaboration, F. Bergsma et al., A search for decaysl of heavy neutrinos, Phys. Lett. 128B (1983) 361 [INSPIRE].

  38. CHARM collaboration, F. Bergsma et al., A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett. B 166 (1986) 473 [INSPIRE].

  39. KLOE-2 collaboration, A. Anastasi et al., Measurement of the ϕπ 0 e + e transition form factor with the KLOE detector, Phys. Lett. B 757 (2016) 362 [arXiv:1601.06565] [INSPIRE].

  40. J. Kozaczuk, The 8 Be anomaly and new physics, talk given at LHC Results Forum, September (2016).

  41. P. Ilten, J. Thaler, M. Williams and W. Xue, Dark photons from charm mesons at LHCb, Phys. Rev. D 92 (2015) 115017 [arXiv:1509.06765] [INSPIRE].

    ADS  Google Scholar 

  42. P. Ilten, Y. Soreq, J. Thaler, M. Williams and W. Xue, Proposed inclusive dark photon search at LHCb, Phys. Rev. Lett. 116 (2016) 251803 [arXiv:1603.08926] [INSPIRE].

    ADS  Article  Google Scholar 

  43. J. Redondo and G. Raffelt, Solar constraints on hidden photons re-visited, JCAP 08 (2013) 034 [arXiv:1305.2920] [INSPIRE].

    ADS  Article  Google Scholar 

  44. N. Vinyoles, A. Serenelli, F.L. Villante, S. Basu, J. Redondo and J. Isern, New axion and hidden photon constraints from a solar data global fit, JCAP 10 (2015) 015 [arXiv:1501.01639] [INSPIRE].

    ADS  Article  Google Scholar 

  45. Y. Hochberg, M. Pyle, Y. Zhao and K.M. Zurek, Detecting superlight dark matter with Fermi-degenerate materials, JHEP 08 (2016) 057 [arXiv:1512.04533] [INSPIRE].

    ADS  Article  Google Scholar 

  46. K. Zurek, private communication.

  47. M. Pospelov and J. Pradler, Big Bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539 [arXiv:1011.1054].

    ADS  Article  Google Scholar 

  48. K.M. Nollett and G. Steigman, BBN and the CMB constrain light, electromagnetically coupled WIMPs, Phys. Rev. D 89 (2014) 083508 [arXiv:1312.5725] [INSPIRE].

    ADS  Google Scholar 

  49. A. Fradette, M. Pospelov, J. Pradler and A. Ritz, Cosmological constraints on very dark photons, Phys. Rev. D 90 (2014) 035022 [arXiv:1407.0993] [INSPIRE].

    ADS  Google Scholar 

  50. B. Wojtsekhowski, D. Nikolenko and I. Rachek, Searching for a new force at VEPP-3, arXiv:1207.5089 [INSPIRE].

  51. J. Balewski et al., The DarkLight experiment: a precision search for new physics at low energies, arXiv:1412.4717 [INSPIRE].

  52. J. Balewski et al., DarkLight: a search for dark forces at the Jefferson laboratory free-electron laser facility, in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1307.4432 [INSPIRE].

  53. K. Aulenbacher, The MESA accelerator, AIP Conf. Proc. 1563 (2013) 5.

    ADS  Article  Google Scholar 

  54. Belle II collaboration, L. Piilonen, Status and prospects of SuperKEKB/Belle II (2013).

  55. HPS collaboration, A. Celentano, The Heavy Photon Search experiment at Jefferson Laboratory, J. Phys. Conf. Ser. 556 (2014) 012064 [arXiv:1505.02025] [INSPIRE].

  56. APEX collaboration, S. Abrahamyan et al., Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett. 107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].

  57. H.-S. Lee, Parity violation by a dark gauge boson, arXiv:1410.8435 [INSPIRE].

  58. T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].

  59. B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].

    ADS  Google Scholar 

  60. Belle collaboration, I. Jaegle, Search for the dark photon and the dark Higgs boson at Belle, Phys. Rev. Lett. 114 (2015) 211801 [arXiv:1502.00084] [INSPIRE].

  61. F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].

    ADS  Article  Google Scholar 

  62. J.S.M. Ginges and V.V. Flambaum, Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles, Phys. Rept. 397 (2004) 63 [physics/0309054] [INSPIRE].

  63. C.S. Wood et al., Measurement of parity nonconservation and an anapole moment in cesium, Science 275 (1997) 1759.

    Article  Google Scholar 

  64. BaBar collaboration, J.P. Lees et al., Search for a dark photon in e + e collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].

  65. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  66. A. Ismail, W.-Y. Keung, K.-H. Tsao and J. Unwin, Axial vector Z and anomaly cancellation, Nucl. Phys. B 918 (2017) 220 [arXiv:1609.02188] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  67. Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  68. P.J. Mohr, B.N. Taylor and D.B. Newell, CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys. 80 (2008) 633 [arXiv:0801.0028] [INSPIRE].

    ADS  Article  Google Scholar 

  69. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α MZ, Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

  70. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and α(M 2 Z ) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].

  71. T. Blum et al., The muon (g − 2) theory value: present and future, arXiv:1311.2198 [INSPIRE].

  72. D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].

    ADS  Article  Google Scholar 

  73. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order QED contribution to the electron g − 2 and an improved value of the fine structure constant, Phys. Rev. Lett. 109 (2012) 111807 [arXiv:1205.5368] [INSPIRE].

    ADS  Article  Google Scholar 

  74. C. Bouchiat and P. Fayet, Constraints on the parity-violating couplings of a new gauge boson, Phys. Lett. B 608 (2005) 87 [hep-ph/0410260] [INSPIRE].

  75. A. Bross, M. Crisler, S.H. Pordes, J. Volk, S. Errede and J. Wrbanek, A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].

    ADS  Article  Google Scholar 

  76. E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].

    ADS  Article  Google Scholar 

  77. S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].

    ADS  Google Scholar 

  78. L. Bergstrom, Rare decay of a pseudoscalar meson into a lepton pair: a way to detect new interactions?, Z. Phys. C 14 (1982) 129 [INSPIRE].

    ADS  Google Scholar 

  79. P. Bickert, P. Masjuan and S. Scherer, η-η mixing in large-N c chiral perturbation theory: discussion, phenomenology and prospects, PoS(CD15)056 [arXiv:1511.01996] [INSPIRE].

  80. HADES collaboration, G. Agakishiev et al., Searching a dark photon with HADES, Phys. Lett. B 731 (2014) 265 [arXiv:1311.0216] [INSPIRE].

  81. WASA-at-COSY collaboration, P. Moskal, Search for a dark photon with the WASA detector at COSY, in the proceedings of the 49th Rencontres de Moriond on QCD and High Energy Interactions, March 22-29, La Thuile, Italy (2014), arXiv:1406.5738 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Gordan Krnjaic.

Additional information

ArXiv ePrint: 1609.09072

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kahn, Y., Krnjaic, G., Mishra-Sharma, S. et al. Light weakly coupled axial forces: models, constraints, and projections. J. High Energ. Phys. 2017, 2 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Beyond Standard Model
  • Gauge Symmetry