L.B. Okun, Limits of electrodynamics: paraphotons?, Sov. Phys. JETP
56 (1982) 502 [INSPIRE].
Google Scholar
B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett.
B 166 (1986) 196 [INSPIRE].
ADS
Article
Google Scholar
J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E
6
models, Phys. Rept.
183 (1989) 193 [INSPIRE].
ADS
Article
Google Scholar
S. Khalil, Low scale B-L extension of the Standard Model at the LHC, J. Phys.
G 35 (2008) 055001 [hep-ph/0611205] [INSPIRE].
S. Khalil and A. Masiero, Radiative B-L symmetry breaking in supersymmetric models, Phys. Lett.
B 665 (2008) 374 [arXiv:0710.3525] [INSPIRE].
ADS
Article
Google Scholar
W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L
μ
-L
τ
models, Phys. Rev.
D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].
ADS
Google Scholar
W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams, Phys. Rev. Lett.
113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].
ADS
Article
Google Scholar
E. Ma, Gauged B-3L
τ
and radiative neutrino masses, Phys. Lett.
B 433 (1998) 74 [hep-ph/9709474] [INSPIRE].
H.-S. Lee and S. Yun, Mini force: the (B − L) + xY gauge interaction with a light mediator, Phys. Rev.
D 93 (2016) 115028 [arXiv:1604.01213] [INSPIRE].
ADS
Google Scholar
C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys.
B 683 (2004) 219 [hep-ph/0305261] [INSPIRE].
C. Boehm, D. Hooper, J. Silk, M. Casse and J. Paul, MeV dark matter: has it been detected?, Phys. Rev. Lett.
92 (2004) 101301 [astro-ph/0309686] [INSPIRE].
C. Boehm, Implications of a new light gauge boson for neutrino physics, Phys. Rev.
D 70 (2004) 055007 [hep-ph/0405240] [INSPIRE].
J.L. Feng et al., Protophobic fifth-force interpretation of the observed anomaly in
8
Be nuclear transitions, Phys. Rev. Lett.
117 (2016) 071803 [arXiv:1604.07411] [INSPIRE].
ADS
Article
Google Scholar
Y. Kahn, M. Schmitt and T.M.P. Tait, Enhanced rare pion decays from a model of MeV dark matter, Phys. Rev.
D 78 (2008) 115002 [arXiv:0712.0007] [INSPIRE].
ADS
Google Scholar
A.E. Dorokhov and M.A. Ivanov, Rare decay π
0 → e
+
e
−
: theory confronts KTeV data, Phys. Rev.
D 75 (2007) 114007 [arXiv:0704.3498] [INSPIRE].
ADS
Google Scholar
KTeV collaboration, E. Abouzaid et al., Measurement of the rare decay π
0 → e
+
e
−, Phys. Rev.
D 75 (2007) 012004 [hep-ex/0610072] [INSPIRE].
P. Masjuan and P. Sanchez-Puertas, Phenomenology of bivariate approximants: the π
0 → e
+
e
−
case and its impact on the electron and muon g − 2, arXiv:1504.07001 [INSPIRE].
P. Masjuan and P. Sanchez-Puertas, η and η
′
decays into lepton pairs, JHEP
08 (2016) 108 [arXiv:1512.09292] [INSPIRE].
A.J. Krasznahorkay et al., Observation of anomalous internal pair creation in
8
Be: a possible indication of a light, neutral boson, Phys. Rev. Lett.
116 (2016) 042501 [arXiv:1504.01527] [INSPIRE].
ADS
Article
Google Scholar
J.L. Feng et al., Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev.
D 95 (2017) 035017 [arXiv:1608.03591] [INSPIRE].
ADS
Google Scholar
K. Harigaya and Y. Nomura, Light chiral dark sector, Phys. Rev.
D 94 (2016) 035013 [arXiv:1603.03430] [INSPIRE].
ADS
Google Scholar
F.C. Correia and S. Fajfer, Restrained dark U(1)
d
at low energies, Phys. Rev.
D 94 (2016) 115023 [arXiv:1609.00860] [INSPIRE].
ADS
Google Scholar
H. Davoudiasl, H.-S. Lee and W.J. Marciano, ‘Dark’ Z implications for parity violation, rare meson decays and Higgs physics, Phys. Rev.
D 85 (2012) 115019 [arXiv:1203.2947] [INSPIRE].
ADS
Google Scholar
H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon anomaly and dark parity violation, Phys. Rev. Lett.
109 (2012) 031802 [arXiv:1205.2709] [INSPIRE].
ADS
Article
Google Scholar
H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon g − 2, rare kaon decays and parity violation from dark bosons, Phys. Rev.
D 89 (2014) 095006 [arXiv:1402.3620] [INSPIRE].
ADS
Google Scholar
CMS collaboration, Search for vector-like charge 2/3 T quarks in proton-proton collisions at
\( \sqrt{s}=8 \)
TeV, Phys. Rev.
D 93 (2016) 012003 [arXiv:1509.04177] [INSPIRE].
P. Fayet, U-boson production in e
+
e
−
annihilations, ψ and Y decays and Light Dark Matter, Phys. Rev.
D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].
S.G. Porsev, K. Beloy and A. Derevianko, Precision determination of electroweak coupling from atomic parity violation and implications for particle physics, Phys. Rev. Lett.
102 (2009) 181601 [arXiv:0902.0335] [INSPIRE].
ADS
Article
Google Scholar
SLAC E158 collaboration, P.L. Anthony et al., Precision measurement of the weak mixing angle in Moller scattering, Phys. Rev. Lett.
95 (2005) 081601 [hep-ex/0504049] [INSPIRE].
S. Bilmis, I. Turan, T.M. Aliev, M. Deniz, L. Singh and H.T. Wong, Constraints on dark photon from neutrino-electron scattering experiments, Phys. Rev.
D 92 (2015) 033009 [arXiv:1502.07763] [INSPIRE].
ADS
Google Scholar
Y.S. Jeong, C.S. Kim and H.-S. Lee, Constraints on the U(1)
L
gauge boson in a wide mass range, Int. J. Mod. Phys.
A 31 (2016) 1650059 [arXiv:1512.03179] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Bellini et al., Precision measurement of the
7
Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett.
107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].
ADS
Article
Google Scholar
TEXONO collaboration, M. Deniz et al., Measurement of
\( {\overline{\nu}}_e-e \)
scattering cross-section with a CsI(Tl) scintillating crystal array at the Kuo-Sheng nuclear power reactor, Phys. Rev.
D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].
CHARM-II collaboration, P. Vilain et al., Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett.
B 335 (1994) 246 [INSPIRE].
NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π
0
decays, Phys. Lett.
B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].
J. Blumlein et al., Limits on neutral light scalar and pseudoscalar particles in a proton beam dump experiment, Z. Phys.
C 51 (1991) 341 [INSPIRE].
Google Scholar
CHARM collaboration, F. Bergsma et al., A search for decaysl of heavy neutrinos, Phys. Lett.
128B (1983) 361 [INSPIRE].
CHARM collaboration, F. Bergsma et al., A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett.
B 166 (1986) 473 [INSPIRE].
KLOE-2 collaboration, A. Anastasi et al., Measurement of the ϕ → π
0
e
+
e
−
transition form factor with the KLOE detector, Phys. Lett.
B 757 (2016) 362 [arXiv:1601.06565] [INSPIRE].
J. Kozaczuk, The
8
Be anomaly and new physics, talk given at LHC Results Forum, September (2016).
P. Ilten, J. Thaler, M. Williams and W. Xue, Dark photons from charm mesons at LHCb, Phys. Rev.
D 92 (2015) 115017 [arXiv:1509.06765] [INSPIRE].
ADS
Google Scholar
P. Ilten, Y. Soreq, J. Thaler, M. Williams and W. Xue, Proposed inclusive dark photon search at LHCb, Phys. Rev. Lett.
116 (2016) 251803 [arXiv:1603.08926] [INSPIRE].
ADS
Article
Google Scholar
J. Redondo and G. Raffelt, Solar constraints on hidden photons re-visited, JCAP
08 (2013) 034 [arXiv:1305.2920] [INSPIRE].
ADS
Article
Google Scholar
N. Vinyoles, A. Serenelli, F.L. Villante, S. Basu, J. Redondo and J. Isern, New axion and hidden photon constraints from a solar data global fit, JCAP
10 (2015) 015 [arXiv:1501.01639] [INSPIRE].
ADS
Article
Google Scholar
Y. Hochberg, M. Pyle, Y. Zhao and K.M. Zurek, Detecting superlight dark matter with Fermi-degenerate materials, JHEP
08 (2016) 057 [arXiv:1512.04533] [INSPIRE].
ADS
Article
Google Scholar
K. Zurek, private communication.
M. Pospelov and J. Pradler, Big Bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Part. Sci.
60 (2010) 539 [arXiv:1011.1054].
ADS
Article
Google Scholar
K.M. Nollett and G. Steigman, BBN and the CMB constrain light, electromagnetically coupled WIMPs, Phys. Rev.
D 89 (2014) 083508 [arXiv:1312.5725] [INSPIRE].
ADS
Google Scholar
A. Fradette, M. Pospelov, J. Pradler and A. Ritz, Cosmological constraints on very dark photons, Phys. Rev.
D 90 (2014) 035022 [arXiv:1407.0993] [INSPIRE].
ADS
Google Scholar
B. Wojtsekhowski, D. Nikolenko and I. Rachek, Searching for a new force at VEPP-3, arXiv:1207.5089 [INSPIRE].
J. Balewski et al., The DarkLight experiment: a precision search for new physics at low energies, arXiv:1412.4717 [INSPIRE].
J. Balewski et al., DarkLight: a search for dark forces at the Jefferson laboratory free-electron laser facility, in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1307.4432 [INSPIRE].
K. Aulenbacher, The MESA accelerator, AIP Conf. Proc.
1563 (2013) 5.
ADS
Article
Google Scholar
Belle II collaboration, L. Piilonen, Status and prospects of SuperKEKB/Belle II (2013).
HPS collaboration, A. Celentano, The Heavy Photon Search experiment at Jefferson Laboratory, J. Phys. Conf. Ser.
556 (2014) 012064 [arXiv:1505.02025] [INSPIRE].
APEX collaboration, S. Abrahamyan et al., Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett.
107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].
H.-S. Lee, Parity violation by a dark gauge boson, arXiv:1410.8435 [INSPIRE].
T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev.
D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].
B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev.
D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].
ADS
Google Scholar
Belle collaboration, I. Jaegle, Search for the dark photon and the dark Higgs boson at Belle, Phys. Rev. Lett.
114 (2015) 211801 [arXiv:1502.00084] [INSPIRE].
F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP
02 (2016) 016 [arXiv:1510.02110] [INSPIRE].
ADS
Article
Google Scholar
J.S.M. Ginges and V.V. Flambaum, Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles, Phys. Rept.
397 (2004) 63 [physics/0309054] [INSPIRE].
C.S. Wood et al., Measurement of parity nonconservation and an anapole moment in cesium, Science
275 (1997) 1759.
Article
Google Scholar
BaBar collaboration, J.P. Lees et al., Search for a dark photon in e
+
e
−
collisions at BaBar, Phys. Rev. Lett.
113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys.
B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
A. Ismail, W.-Y. Keung, K.-H. Tsao and J. Unwin, Axial vector Z
′
and anomaly cancellation, Nucl. Phys.
B 918 (2017) 220 [arXiv:1609.02188] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.
D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
P.J. Mohr, B.N. Taylor and D.B. Newell, CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys.
80 (2008) 633 [arXiv:0801.0028] [INSPIRE].
ADS
Article
Google Scholar
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α
MZ, Eur. Phys. J.
C 71 (2011) 1515 [Erratum ibid.
C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)
μ
and α(M
2
Z
) re-evaluated using new precise data, J. Phys.
G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].
T. Blum et al., The muon (g − 2) theory value: present and future, arXiv:1311.2198 [INSPIRE].
D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett.
100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].
ADS
Article
Google Scholar
T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order QED contribution to the electron g − 2 and an improved value of the fine structure constant, Phys. Rev. Lett.
109 (2012) 111807 [arXiv:1205.5368] [INSPIRE].
ADS
Article
Google Scholar
C. Bouchiat and P. Fayet, Constraints on the parity-violating couplings of a new gauge boson, Phys. Lett.
B 608 (2005) 87 [hep-ph/0410260] [INSPIRE].
A. Bross, M. Crisler, S.H. Pordes, J. Volk, S. Errede and J. Wrbanek, A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett.
67 (1991) 2942 [INSPIRE].
ADS
Article
Google Scholar
E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett.
59 (1987) 755 [INSPIRE].
ADS
Article
Google Scholar
S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev.
D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].
ADS
Google Scholar
L. Bergstrom, Rare decay of a pseudoscalar meson into a lepton pair: a way to detect new interactions?, Z. Phys.
C 14 (1982) 129 [INSPIRE].
ADS
Google Scholar
P. Bickert, P. Masjuan and S. Scherer, η-η
′
mixing in large-N
c
chiral perturbation theory: discussion, phenomenology and prospects, PoS(CD15)056 [arXiv:1511.01996] [INSPIRE].
HADES collaboration, G. Agakishiev et al., Searching a dark photon with HADES, Phys. Lett.
B 731 (2014) 265 [arXiv:1311.0216] [INSPIRE].
WASA-at-COSY collaboration, P. Moskal, Search for a dark photon with the WASA detector at COSY, in the proceedings of the 49th
Rencontres de Moriond on QCD and High Energy Interactions, March 22-29, La Thuile, Italy (2014), arXiv:1406.5738 [INSPIRE].