Indirect constraints on the scalar di-photon resonance at the LHC

  • Florian Goertz
  • Jernej F. Kamenik
  • Andrey Katz
  • Marco Nardecchia
Open Access
Regular Article - Theoretical Physics


Motivated by the tantalizing excesses recently reported in the di-photon invariant mass spectrum at the LHC, we scrutinize some implications of scalar di-photon resonances in high energy proton-proton collisions. In particular, indications of a large width impose several challenges for model building. We show how calculability and unitarity considerations severely limit possible perturbative realizations of such a signal and propose a simple criterion that can be adapted to any renormalizable model. Furthermore, we discuss correlations between a di-photon excess and precision observables, including the anomalous magnetic and electric dipole moments of quarks and leptons, neutral meson oscillations and radiative flavor changing neutral current mediated decays of heavy leptons and hadrons. We find that existing searches and measurements significantly constrain the possibilities for a scalar resonance decaying into final states involving Standard Model fermions. We propose future search strategies which could elucidate some remaining currently unconstrained decay channels and discuss possible correlations between the di-photon excess and several recently reported flavor anomalies, showing that the latter can be addressed in a new incarnation of a gauged U(1) model, with the di-photon resonance being the physical remnant of the U(1)-breaking field.


Beyond Standard Model Effective field theories Renormalization Group 


  1. [1]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081.
  2. [2]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at 13 TeV, CMS-PAS-EXO-15-004.
  3. [3]
    ATLAS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 032004 [arXiv:1504.05511] [INSPIRE].
  4. [4]
    CMS collaboration, Search for High-Mass Diphoton Resonances in pp Collisions at \( \sqrt{s}=8 \) TeV with the CMS Detector,CMS-PAS-EXO-12-045.
  5. [5]
    A. Pilaftsis, Diphoton Signatures from Heavy Axion Decays at the CERN Large Hadron Collider, Phys. Rev. D 93 (2016) 015017 [arXiv:1512.04931] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Knapen, T. Melia, M. Papucci and K. Zurek, Rays of light from the LHC, Phys. Rev. D 93 (2016) 075020 [arXiv:1512.04928] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Angelescu, A. Djouadi and G. Moreau, Scenarii for interpretations of the LHC diphoton excess: two Higgs doublets and vector-like quarks and leptons, Phys. Lett. B 756 (2016) 126 [arXiv:1512.04921] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Di Chiara, L. Marzola and M. Raidal, First interpretation of the 750 GeV diphoton resonance at the LHC, Phys. Rev. D 93 (2016) 095018 [arXiv:1512.04939] [INSPIRE].Google Scholar
  9. [9]
    D. Buttazzo, A. Greljo and D. Marzocca, Knocking on new physics’ door with a scalar resonance, Eur. Phys. J. C 76 (2016) 116 [arXiv:1512.04929] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Backovic, A. Mariotti and D. Redigolo, Di-photon excess illuminates Dark Matter, JHEP 03 (2016) 157 [arXiv:1512.04917] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Harigaya and Y. Nomura, Composite Models for the 750 GeV Diphoton Excess, Phys. Lett. B 754 (2016) 151 [arXiv:1512.04850] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Y. Mambrini, G. Arcadi and A. Djouadi, The LHC diphoton resonance and dark matter, Phys. Lett. B 755 (2016) 426 [arXiv:1512.04913] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Belyaev, G. Cacciapaglia, H. Cai, T. Flacke, A. Parolini and H. Serôdio, Singlets in Composite Higgs Models in light of the LHC di-photon searches, arXiv:1512.07242 [INSPIRE].
  14. [14]
    G.M. Pelaggi, A. Strumia and E. Vigiani, Trinification can explain the di-photon and di-boson LHC anomalies, JHEP 03 (2016) 025 [arXiv:1512.07225] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    U.K. Dey, S. Mohanty and G. Tomar, 750 GeV resonance in the dark left-right model, Phys. Lett. B 756 (2016) 384 [arXiv:1512.07212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A.E.C. Hernández and I. Nisandzic, LHC diphoton 750 GeV resonance as an indication of SU(3)c × SU(3)L × U(1)X gauge symmetry, arXiv:1512.07165 [INSPIRE].
  17. [17]
    C.W. Murphy, Vector Leptoquarks and the 750 GeV Diphoton Resonance at the LHC, Phys. Lett. B 757 (2016) 192 [arXiv:1512.06976] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S.M. Boucenna, S. Morisi and A. Vicente, The LHC diphoton resonance from gauge symmetry, arXiv:1512.06878 [INSPIRE].
  19. [19]
    J. de Blas, J. Santiago and R. Vega-Morales, New vector bosons and the diphoton excess, arXiv:1512.07229 [INSPIRE].
  20. [20]
    P.S.B. Dev and D. Teresi, Asymmetric Dark Matter in the Sun and the Diphoton Excess at the LHC, arXiv:1512.07243 [INSPIRE].
  21. [21]
    M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg, Tricking Landau-Yang: How to obtain the diphoton excess from a vector resonance, Phys. Lett. B 755 (2016) 145 [arXiv:1512.06833] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Bauer and M. Neubert, Flavor Anomalies, the Diphoton Excess and a Dark Matter Candidate, arXiv:1512.06828 [INSPIRE].
  23. [23]
    J.M. Cline and Z. Liu, LHC diphotons from electroweakly pair-produced composite pseudoscalars, arXiv:1512.06827 [INSPIRE].
  24. [24]
    L. Berthier, J.M. Cline, W. Shepherd and M. Trott, Effective interpretations of a diphoton excess, JHEP 04 (2016) 084 [arXiv:1512.06799] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.S. Kim, K. Rolbiecki and R. Ruiz de Austri, Model-independent combination of diphoton constraints at 750 GeV, Eur. Phys. J. C 76 (2016) 251 [arXiv:1512.06797] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    X.-J. Bi, Q.-F. Xiang, P.-F. Yin and Z.-H. Yu, The 750 GeV diphoton excess at the LHC and dark matter constraints, Nucl. Phys. B 909 (2016) 43 [arXiv:1512.06787] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    J.J. Heckman, 750 GeV Diphotons from a D3-brane, Nucl. Phys. B 906 (2016) 231 [arXiv:1512.06773] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    F.P. Huang, C.S. Li, Z.L. Liu and Y. Wang, 750 GeV Diphoton Excess from Cascade Decay, arXiv:1512.06732 [INSPIRE].
  29. [29]
    J. Cao, C. Han, L. Shang, W. Su, J.M. Yang and Y. Zhang, Interpreting the 750 GeV diphoton excess by the singlet extension of the Manohar-Wise model, Phys. Lett. B 755 (2016) 456 [arXiv:1512.06728] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Wang, L. Wu, J.M. Yang and M. Zhang, 750 GeV Diphoton Resonance, 125 GeV Higgs and Muon g − 2 Anomaly in Deflected Anomaly Mediation SUSY Breaking Scenario, arXiv:1512.06715 [INSPIRE].
  31. [31]
    O. Antipin, M. Mojaza and F. Sannino, A natural Coleman-Weinberg theory explains the diphoton excess, arXiv:1512.06708 [INSPIRE].
  32. [32]
    X.-F. Han and L. Wang, Implication of the 750 GeV diphoton resonance on two-Higgs-doublet model and its extensions with Higgs field, Phys. Rev. D 93 (2016) 055027 [arXiv:1512.06587] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Ding, L. Huang, T. Li and B. Zhu, Interpreting 750 GeV Diphoton Excess with R-parity Violating Supersymmetry, arXiv:1512.06560 [INSPIRE].
  34. [34]
    W. Chao, Symmetries Behind the 750 GeV Diphoton Excess, arXiv:1512.06297 [INSPIRE].
  35. [35]
    D. Barducci, A. Goudelis, S. Kulkarni and D. Sengupta, One jet to rule them all: monojet constraints and invisible decays of a 750 GeV diphoton resonance, arXiv:1512.06842 [INSPIRE].
  36. [36]
    W.S. Cho, D. Kim, K. Kong, S.H. Lim, K.T. Matchev, J.-C. Park et al., 750 GeV Diphoton Excess May Not Imply a 750 GeV Resonance, Phys. Rev. Lett. 116 (2016) 151805 [arXiv:1512.06824] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W. Liao and H.-q. Zheng, Scalar resonance at 750 GeV as composite of heavy vector-like fermions, arXiv:1512.06741 [INSPIRE].
  38. [38]
    T.-F. Feng, X.-Q. Li, H.-B. Zhang and S.-M. Zhao, The LHC 750 GeV diphoton excess in supersymmetry with gauged baryon and lepton numbers, arXiv:1512.06696 [INSPIRE].
  39. [39]
    D. Bardhan, D. Bhatia, A. Chakraborty, U. Maitra, S. Raychaudhuri and T. Samui, Radion Candidate for the LHC Diphoton Resonance, arXiv:1512.06674 [INSPIRE].
  40. [40]
    J. Chang, K. Cheung and C.-T. Lu, Interpreting the 750 GeV diphoton resonance using photon jets in hidden-valley-like models, Phys. Rev. D 93 (2016) 075013 [arXiv:1512.06671] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M.-x. Luo, K. Wang, T. Xu, L. Zhang and G. Zhu, Squarkonium, diquarkonium and octetonium at the LHC and their diphoton decays, Phys. Rev. D 93 (2016) 055042 [arXiv:1512.06670] [INSPIRE].ADSGoogle Scholar
  42. [42]
    H. Han, S. Wang and S. Zheng, Scalar Explanation of Diphoton Excess at LHC, Nucl. Phys. B 907 (2016) 180 [arXiv:1512.06562] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    S. Chang, A Simple U(1) Gauge Theory Explanation of the Diphoton Excess, Phys. Rev. D 93 (2016) 055016 [arXiv:1512.06426] [INSPIRE].ADSGoogle Scholar
  44. [44]
    C. Han, H.M. Lee, M. Park and V. Sanz, The diphoton resonance as a gravity mediator of dark matter, Phys. Lett. B 755 (2016) 371 [arXiv:1512.06376] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Bernon and C. Smith, Could the width of the diphoton anomaly signal a three-body decay?, Phys. Lett. B 757 (2016) 148 [arXiv:1512.06113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    L.M. Carpenter, R. Colburn and J. Goodman, Supersoft SUSY Models and the 750 GeV Diphoton Excess, Beyond Effective Operators, arXiv:1512.06107 [INSPIRE].
  47. [47]
    E. Megias, O. Pujolàs and M. Quirós, On dilatons and the LHC diphoton excess, arXiv:1512.06106 [INSPIRE].
  48. [48]
    A. Alves, A.G. Dias and K. Sinha, The 750 GeV S-cion: Where else should we look for it?, Phys. Lett. B 757 (2016) 39 [arXiv:1512.06091] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    E. Gabrielli, K. Kannike, B. Mele, M. Raidal, C. Spethmann and H. Veermäe, A SUSY Inspired Simplified Model for the 750 GeV Diphoton Excess, Phys. Lett. B 756 (2016) 36 [arXiv:1512.05961] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    J.S. Kim, J. Reuter, K. Rolbiecki and R. Ruiz de Austri, A resonance without resonance: scrutinizing the diphoton excess at 750 GeV, Phys. Lett. B 755 (2016) 403 [arXiv:1512.06083] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    R. Benbrik, C.-H. Chen and T. Nomura, Higgs singlet boson as a diphoton resonance in a vectorlike quark model, Phys. Rev. D 93 (2016) 055034 [arXiv:1512.06028] [INSPIRE].ADSGoogle Scholar
  52. [52]
    Y. Bai, J. Berger and R. Lu, 750 GeV dark pion: Cousin of a dark G-parity odd WIMP, Phys. Rev. D 93 (2016) 076009 [arXiv:1512.05779] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Falkowski, O. Slone and T. Volansky, Phenomenology of a 750 GeV Singlet, JHEP 02 (2016) 152 [arXiv:1512.05777] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    C. Csáki, J. Hubisz and J. Terning, Minimal model of a diphoton resonance: Production without gluon couplings, Phys. Rev. D 93 (2016) 035002 [arXiv:1512.05776] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J. Chakrabortty, A. Choudhury, P. Ghosh, S. Mondal and T. Srivastava, Di-photon resonance around 750 GeV: shedding light on the theory underneath, arXiv:1512.05767 [INSPIRE].
  56. [56]
    L. Bian, N. Chen, D. Liu and J. Shu, Hidden confining world on the 750 GeV diphoton excess, Phys. Rev. D 93 (2016) 095011 [arXiv:1512.05759] [INSPIRE].Google Scholar
  57. [57]
    D. Curtin and C.B. Verhaaren, Quirky Explanations for the Diphoton Excess, Phys. Rev. D 93 (2016) 055011 [arXiv:1512.05753] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S. Fichet, G. von Gersdorff and C. Royon, Scattering light by light at 750 GeV at the LHC, Phys. Rev. D 93 (2016) 075031 [arXiv:1512.05751] [INSPIRE].ADSGoogle Scholar
  59. [59]
    W. Chao, R. Huo and J.-H. Yu, The Minimal Scalar-Stealth Top Interpretation of the Diphoton Excess, arXiv:1512.05738 [INSPIRE].
  60. [60]
    S.V. Demidov and D.S. Gorbunov, On the sgoldstino interpretation of the diphoton excess, JETP Lett. 103 (2016) 219 [arXiv:1512.05723] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    J.M. No, V. Sanz and J. Setford, See-saw composite Higgs model at the LHC: Linking naturalness to the 750 GeV diphoton resonance, Phys. Rev. D 93 (2016) 095010 [arXiv:1512.05700] [INSPIRE].Google Scholar
  62. [62]
    D. Bečirević, E. Bertuzzo, O. Sumensari and R. Zukanovich Funchal, Can the new resonance at LHC be a CP -Odd Higgs boson?, Phys. Lett. B 757 (2016) 261 [arXiv:1512.05623] [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    A. Ahmed, B.M. Dillon, B. Grzadkowski, J.F. Gunion and Y. Jiang, Higgs-radion interpretation of 750 GeV di-photon excess at the LHC, arXiv:1512.05771 [INSPIRE].
  64. [64]
    P. Cox, A.D. Medina, T.S. Ray and A. Spray, Diphoton Excess at 750 GeV from a Radion in the Bulk-Higgs Scenario, arXiv:1512.05618 [INSPIRE].
  65. [65]
    A. Kobakhidze, F. Wang, L. Wu, J.M. Yang and M. Zhang, 750 GeV diphoton resonance in a top and bottom seesaw model, Phys. Lett. B 757 (2016) 92 [arXiv:1512.05585] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    Q.-H. Cao, Y. Liu, K.-P. Xie, B. Yan and D.-M. Zhang, A Boost Test of Anomalous Diphoton Resonance at the LHC, arXiv:1512.05542 [INSPIRE].
  67. [67]
    B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, Interpretation of the diphoton excess at CMS and ATLAS, Phys. Rev. D 93 (2016) 055032 [arXiv:1512.05439] [INSPIRE].ADSGoogle Scholar
  68. [68]
    C. Petersson and R. Torre, 750 GeV Diphoton Excess from the Goldstino Superpartner, Phys. Rev. Lett. 116 (2016) 151804 [arXiv:1512.05333] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Low, A. Tesi and L.-T. Wang, A pseudoscalar decaying to photon pairs in the early LHC Run 2 data, JHEP 03 (2016) 108 [arXiv:1512.05328] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    S.D. McDermott, P. Meade and H. Ramani, Singlet Scalar Resonances and the Diphoton Excess, Phys. Lett. B 755 (2016) 353 [arXiv:1512.05326] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    T. Higaki, K.S. Jeong, N. Kitajima and F. Takahashi, The QCD Axion from Aligned Axions and Diphoton Excess, Phys. Lett. B 755 (2016) 13 [arXiv:1512.05295] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    B. Bellazzini, R. Franceschini, F. Sala and J. Serra, Goldstones in Diphotons, JHEP 04 (2016) 072 [arXiv:1512.05330] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    E. Molinaro, F. Sannino and N. Vignaroli, Minimal Composite Dynamics versus Axion Origin of the Diphoton excess, arXiv:1512.05334 [INSPIRE].
  74. [74]
    K.M. Patel and P. Sharma, Interpreting 750 GeV diphoton excess in SU (5) grand unified theory, Phys. Lett. B 757 (2016) 282 [arXiv:1512.07468] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    Y. Nakai, R. Sato and K. Tobioka, Footprints of New Strong Dynamics via Anomaly and the 750 GeV Diphoton, Phys. Rev. Lett. 116 (2016) 151802 [arXiv:1512.04924] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    K. Das and S.K. Rai, 750 GeV diphoton excess in a U (1) hidden symmetry model, Phys. Rev. D 93 (2016) 095007 [arXiv:1512.07789] [INSPIRE].ADSGoogle Scholar
  77. [77]
    R. Franceschini et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144 [arXiv:1512.04933] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].
  79. [79]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].
  80. [80]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].
  81. [81]
    M.-x. Luo, H.-w. Wang and Y. Xiao, Two loop renormalization group equations in general gauge field theories, Phys. Rev. D 67 (2003) 065019 [hep-ph/0211440] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  83. [83]
    D. Hanneke, S.F. Hoogerheide and G. Gabrielse, Cavity Control of a Single-Electron Quantum Cyclotron: Measuring the Electron Magnetic Moment, Phys. Rev. A 83 (2011) 052122 [arXiv:1009.4831] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    DELPHI collaboration, J. Abdallah et al., Study of tau-pair production in photon-photon collisions at LEP and limits on the anomalous electromagnetic moments of the tau lepton, Eur. Phys. J. C 35 (2004) 159 [hep-ex/0406010] [INSPIRE].
  85. [85]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  86. [86]
    D. Chang, W.-F. Chang, C.-H. Chou and W.-Y. Keung, Large two loop contributions to g−2 from a generic pseudoscalar boson, Phys. Rev. D 63(2001) 091301 [hep-ph/0009292] [INSPIRE].
  87. [87]
    A. Dedes and H.E. Haber, Can the Higgs sector contribute significantly to the muon anomalous magnetic moment?, JHEP 05 (2001) 006 [hep-ph/0102297] [INSPIRE].
  88. [88]
    K.-m. Cheung, C.-H. Chou and O.C.W. Kong, Muon anomalous magnetic moment, two Higgs doublet model and supersymmetry, Phys. Rev. D 64 (2001) 111301 [hep-ph/0103183] [INSPIRE].
  89. [89]
    K. Cheung and O.C.W. Kong, Can the two Higgs doublet model survive the constraint from the muon anomalous magnetic moment as suggested?, Phys. Rev. D 68 (2003) 053003 [hep-ph/0302111] [INSPIRE].
  90. [90]
    J.F. Gunion, A Light CP -odd Higgs boson and the muon anomalous magnetic moment, JHEP 08 (2009) 032 [arXiv:0808.2509] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    V. Ilisie, New Barr-Zee contributions to (g2)μ in two-Higgs-doublet models, JHEP 04 (2015) 077 [arXiv:1502.04199] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    J. Brod, U. Haisch and J. Zupan, Constraints on CP -violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [Erratum ibid. D 88 (2013) 039903] [arXiv:1107.3143] [INSPIRE].
  94. [94]
    G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole moment of the neutron in the MSSM, JHEP 11 (2005) 044 [hep-ph/0510137] [INSPIRE].
  95. [95]
    J. Hisano, K. Tsumura and M.J.S. Yang, QCD Corrections to Neutron Electric Dipole Moment from Dimension-six Four-Quark Operators, Phys. Lett. B 713 (2012) 473 [arXiv:1205.2212] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    E. Braaten, C.-S. Li and T.-C. Yuan, The Evolution of Weinberg’s Gluonic CP -Violation Operator, Phys. Rev. Lett. 64 (1990) 1709 [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    D. Chang, T.W. Kephart, W.-Y. Keung and T.C. Yuan, The Chromoelectric dipole moment of the heavy quark and purely gluonic CP -violating operators, Phys. Rev. Lett. 68 (1992) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].
  99. [99]
    T. Bhattacharya, V. Cirigliano, R. Gupta, H.-W. Lin and B. Yoon, Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD, Phys. Rev. Lett. 115 (2015) 212002 [arXiv:1506.04196] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    PNDME collaboration, T. Bhattacharya et al., Iso-vector and Iso-scalar Tensor Charges of the Nucleon from Lattice QCD, Phys. Rev. D 92 (2015) 094511 [arXiv:1506.06411] [INSPIRE].
  101. [101]
    K. Fuyuto, J. Hisano and N. Nagata, Neutron electric dipole moment induced by strangeness revisited, Phys. Rev. D 87 (2013) 054018 [arXiv:1211.5228] [INSPIRE].ADSGoogle Scholar
  102. [102]
    D.A. Dicus, Neutron Electric Dipole Moment From Charged Higgs Exchange, Phys. Rev. D 41 (1990) 999 [INSPIRE].ADSGoogle Scholar
  103. [103]
    G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    ETM collaboration, V. Bertone et al., Kaon Mixing Beyond the SM from N f = 2 tmQCD and model independent constraints from the UTA, JHEP 03 (2013) 089 [Erratum ibid. 1307 (2013) 143] [arXiv:1207.1287] [INSPIRE].
  106. [106]
    ETM collaboration, N. Carrasco et al., B-physics from N f = 2 tmQCD: the Standard Model and beyond, JHEP 03 (2014) 016 [arXiv:1308.1851] [INSPIRE].
  107. [107]
    N. Carrasco et al., D 0 − D 0 mixing in the standard model and beyond from N f = 2 twisted mass QCD, Phys. Rev. D 90 (2014) 014502 [arXiv:1403.7302] [INSPIRE].ADSGoogle Scholar
  108. [108]
    S. Davidson and G.J. Grenier, Lepton flavour violating Higgs and tau to mu gamma, Phys. Rev. D 81 (2010) 095016 [arXiv:1001.0434] [INSPIRE].ADSGoogle Scholar
  109. [109]
    A. Goudelis, O. Lebedev and J.-h. Park, Higgs-induced lepton flavor violation, Phys. Lett. B 707 (2012) 369 [arXiv:1111.1715] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \overline{B}\to {X}_s\gamma \) matrix elements using interpolation in m c, Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].
  111. [111]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  113. [113]
    S. Descotes-Genon, D. Ghosh, J. Matias and M. Ramon, Exploring New Physics in the C7 -C7plane, JHEP 06 (2011) 099 [arXiv:1104.3342] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  114. [114]
    W. Altmannshofer and D.M. Straub, New physics in bs transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    A.J. Buras, M. Gorbahn, S. Jäger and M. Jamin, Improved anatomy of ε/ε in the Standard Model, JHEP 11 (2015) 202 [arXiv:1507.06345] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    NA48 collaboration, J.R. Batley et al., A Precision measurement of direct CP -violation in the decay of neutral kaons into two pions, Phys. Lett. B 544 (2002) 97 [hep-ex/0208009] [INSPIRE].
  117. [117]
    KTeV collaboration, A. Alavi-Harati et al., Measurements of direct CP -violation, CPT symmetry and other parameters in the neutral kaon system, Phys. Rev. D 67 (2003) 012005 [Erratum ibid. D 70 (2004) 079904] [hep-ex/0208007] [INSPIRE].
  118. [118]
    KTeV collaboration, E.T. Worcester, The Final Measurement of εfrom KTeV, in Heavy Quarks and Leptons 2008 (HQ&L08), Melbourne, Australia, 5-9 June 2008 [arXiv:0909.2555] [INSPIRE].
  119. [119]
    A.J. Buras, G. Colangelo, G. Isidori, A. Romanino and L. Silvestrini, Connections between epsilon-prime/epsilon and rare kaon decays in supersymmetry, Nucl. Phys. B 566 (2000) 3 [hep-ph/9908371] [INSPIRE].
  120. [120]
    [120]ATLAS collaboration, Search for \( {W}^{\prime}\to t\overline{b} \) in the lepton plus jets final state in proton-proton collisions at a centre-of-mass energy of \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 743 (2015) 235 [arXiv:1410.4103] [INSPIRE].
  121. [121]
    ATLAS collaboration, Search for charged Higgs bosons in the H ±tb decay channel in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, JHEP 03 (2016) 127 [arXiv:1512.03704] [INSPIRE].
  122. [122]
    LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay B 0K ∗0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
  123. [123]
    LHCb collaboration, Angular analysis of the B 0K ∗0 μ + μ decay, LHCb-CONF-2015-002; CERN-LHCb-CONF-2015-002.
  124. [124]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  125. [125]
    W. Altmannshofer and D.M. Straub, Implications of bs measurements, in proceedings of the 50th Recontres de Moriond Electroweak interactions and unified theories, La Thuile, Italy, 14-21 March 2015, pp. 333-338 [arXiv:1503.06199] [INSPIRE].
  126. [126]
    R. Gauld, F. Goertz and U. Haisch, On minimal Z explanations of the BK μ + μ anomaly, Phys. Rev. D 89 (2014) 015005 [arXiv:1308.1959] [INSPIRE].ADSGoogle Scholar
  127. [127]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μL τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].ADSGoogle Scholar
  128. [128]
    C. Niehoff, P. Stangl and D.M. Straub, Violation of lepton flavour universality in composite Higgs models, Phys. Lett. B 747 (2015) 182 [arXiv:1503.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    S. Dawson and E. Furlan, A Higgs Conundrum with Vector Fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].ADSGoogle Scholar
  130. [130]
    S. Fajfer, A. Greljo, J.F. Kamenik and I. Mustac, Light Higgs and Vector-like Quarks without Prejudice, JHEP 07 (2013) 155 [arXiv:1304.4219] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    R. Belusevic and J. Smith, W -Z Interference in ν-Nucleus Scattering, Phys. Rev. D 37 (1988) 2419 [INSPIRE].ADSGoogle Scholar
  132. [132]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  133. [133]
    E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal Matter at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  134. [134]
    L. Di Luzio, R. Gröber, J.F. Kamenik and M. Nardecchia, Accidental matter at the LHC, JHEP 07 (2015) 074 [arXiv:1504.00359] [INSPIRE].CrossRefGoogle Scholar
  135. [135]
    ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 104 [arXiv:1409.5500] [INSPIRE].
  136. [136]
    ATLAS collaboration, Search for vector-like B quarks in events with one isolated lepton, missing transverse momentum and jets at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 112011 [arXiv:1503.05425] [INSPIRE].
  137. [137]
    ATLAS collaboration, Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2015) 150 [arXiv:1504.04605] [INSPIRE].
  138. [138]
    ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].
  139. [139]
    ATLAS collaboration, Search for the production of single vector-like and excited quarks in the W t final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 02 (2016) 110 [arXiv:1510.02664] [INSPIRE].
  140. [140]
    CMS collaboration, Search for pair-produced vector-like B quarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, arXiv:1507.07129 [INSPIRE].
  141. [141]
    CMS collaboration, Search for vector-like charge 2/3 T quarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 012003 [arXiv:1509.04177] [INSPIRE].
  142. [142]
    Y. Gershtein et al., Working Group Report: New Particles, Forces and Dimensions, in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., July 29 - August 6 2013 [arXiv:1311.0299] [INSPIRE].
  143. [143]
    Top Quark Working Group collaboration, K. Agashe et al., Working Group Report Top Quark, in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., July 29 - August 6 2013 [arXiv:1311.2028] [INSPIRE].
  144. [144]
    A. Falkowski, D.M. Straub and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, JHEP 05 (2014) 092 [arXiv:1312.5329] [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    M. Son and A. Urbano, A new scalar resonance at 750 GeV: Towards a proof of concept in favor of strongly interacting theories, arXiv:1512.08307 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Florian Goertz
    • 1
  • Jernej F. Kamenik
    • 1
    • 2
    • 3
  • Andrey Katz
    • 1
    • 4
  • Marco Nardecchia
    • 5
  1. 1.Theory Division, CERNGeneva 23Switzerland
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia
  3. 3.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Department of Theoretical Physics and Center for Astroparticle PhysicsUniversité de GenèveGeneva 4Switzerland
  5. 5.DAMPT, University of CambridgeCambridgeUnited Kingdom

Personalised recommendations