S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett.
43 (1979) 1566 [INSPIRE].
ADS
Article
Google Scholar
P. Minkowski, μ → eγ at a Rate of One Out of 109
Muon Decays?, Phys. Lett.
B 67 (1977) 421 [INSPIRE].
ADS
Article
Google Scholar
M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North-Holland Publishing Company, Amsterdam The Netherlands (1979), pg. 315.
T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theories and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95.
R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett.
44 (1980) 912 [INSPIRE].
ADS
Article
Google Scholar
S.F. King, Neutrinos, flavour and CP violation, PoS(PLANCK 2015)068.
M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett.
B 174 (1986) 45 [INSPIRE].
ADS
Article
Google Scholar
J.J. Gómez-Cadenas, J. Martín-Albo, M. Mezzetto, F. Monrabal and M. Sorel, The Search for neutrinoless double beta decay, Riv. Nuovo Cim.
35 (2012) 29 [arXiv:1109.5515] [INSPIRE].
Google Scholar
A. Giuliani and A. Poves, Neutrinoless double-beta decay, Adv. High Energy Phys.
2012 (2012) 857016.
S.R. Elliott, Recent Progress in Double Beta Decay, Mod. Phys. Lett.
A 27 (2012) 1230009 [arXiv:1203.1070] [INSPIRE].
ADS
Article
Google Scholar
O. Cremonesi and M. Pavan, Challenges in Double Beta Decay, Adv. High Energy Phys.
2014 (2014) 951432 [arXiv:1310.4692] [INSPIRE].
NEXT collaboration, V. Álvarez et al., Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC, Nucl. Instrum. Meth.
A 708 (2013) 101 [arXiv:1211.4474] [INSPIRE].
NEXT collaboration, D. Lorca et al., Characterisation of NEXT-DEMO using xenon K
α
X-rays, 2014 JINST
9 P10007 [arXiv:1407.3966] [INSPIRE].
NEXT collaboration, V. Álvarez et al., Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST
8 P09011 [arXiv:1306.0471] [INSPIRE].
NEXT collaboration, P. Ferrario et al., First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP
01 (2016) 104 [arXiv:1507.05902] [INSPIRE].
G. Feinberg and M. Goldhaber, Microscopic tests of symmetry principles, Proc. Natl. Acad. Sci. USA
45 (1959) 1301.
ADS
Article
MATH
Google Scholar
B. Pontecorvo, Superweak interactions and double beta decay, Phys. Lett.
B 26 (1968) 630 [INSPIRE].
ADS
Article
Google Scholar
R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev.
D 23 (1981) 165 [INSPIRE].
ADS
Google Scholar
R.N. Mohapatra, New Contributions to Neutrinoless Double beta Decay in Supersymmetric Theories, Phys. Rev.
D 34 (1986) 3457 [INSPIRE].
ADS
Google Scholar
M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, New supersymmetric contributions to neutrinoless double beta decay, Phys. Lett.
B 352 (1995) 1 [hep-ph/9502315] [INSPIRE].
ADS
Article
Google Scholar
V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay, Phys. Rev. Lett.
106 (2011) 151801 [arXiv:1011.3522] [INSPIRE].
ADS
Article
Google Scholar
G. Racah, On the symmetry of particle and antiparticle, Nuovo Cim.
14 (1937) 322 [INSPIRE].
Article
Google Scholar
W.H. Furry, On transition probabilities in double beta-disintegration, Phys. Rev.
56 (1939) 1184 [INSPIRE].
ADS
Article
MATH
Google Scholar
M. Wang et al., The Ame2012 atomic mass evaluation, Chin. Phys.
C 36 (2012) 1603.
ADS
Article
Google Scholar
M. Redshaw, E. Wingfield, J. McDaniel and E.G. Myers, Mass and double-beta-decay Q value of Xe-136, Phys. Rev. Lett.
98 (2007) 053003 [INSPIRE].
ADS
Article
Google Scholar
P.M. McCowan and R.C. Barber, Q value for the double-beta decay of Xe-136, Phys. Rev.
C 82 (2010) 024603 [INSPIRE].
ADS
Google Scholar
J. Kotila and F. Iachello, Phase space factors for double-β decay, Phys. Rev.
C 85 (2012) 034316 [arXiv:1209.5722] [INSPIRE].
ADS
Google Scholar
M. Mirea, T. Pahomi and S. Stoica, Phase Space Factors for Double Beta Decay: an up-date, arXiv:1411.5506 [INSPIRE].
J. Menendez, A. Poves, E. Caurier and F. Nowacki, Disassembling the Nuclear Matrix Elements of the Neutrinoless beta beta Decay, Nucl. Phys.
A 818 (2009) 139 [arXiv:0801.3760] [INSPIRE].
ADS
Article
Google Scholar
J. Barea, J. Kotila and F. Iachello, 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration, Phys. Rev.
C 91 (2015) 034304 [arXiv:1506.08530] [INSPIRE].
ADS
Google Scholar
F. Šimkovic, V. Rodin, A. Faessler and P. Vogel, 0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation and isospin symmetry restoration, Phys. Rev.
C 87 (2013) 045501 [arXiv:1302.1509] [INSPIRE].
ADS
Google Scholar
J. Hyvärinen and J. Suhonen, Nuclear matrix elements for 0νββ decays with light or heavy Majorana-neutrino exchange, Phys. Rev.
C 91 (2015) 024613 [INSPIRE].
ADS
Google Scholar
N. López Vaquero, T.R. Rodríguez and J.L. Egido, Shape and pairing fluctuations effects on neutrinoless double beta decay nuclear matrix elements, Phys. Rev. Lett.
111 (2013) 142501 [arXiv:1401.0650] [INSPIRE].
Article
Google Scholar
J.M. Yao, L.S. Song, K. Hagino, P. Ring and J. Meng, Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory, Phys. Rev.
C 91 (2015) 024316 [arXiv:1410.6326] [INSPIRE].
ADS
Google Scholar
A.S. Barabash, Average and recommended half-life values for two neutrino double beta decay, Nucl. Phys.
A 935 (2015) 52 [arXiv:1501.05133] [INSPIRE].
ADS
Article
Google Scholar
J. Barea, J. Kotila and F. Iachello, Nuclear matrix elements for double-β decay, Phys. Rev.
C 87 (2013) 014315 [arXiv:1301.4203] [INSPIRE].
ADS
Google Scholar
J. Engel, F. Simkovic and P. Vogel, Chiral Two-Body Currents and Neutrinoless Double-Beta Decay in the QRPA, Phys. Rev.
C 89 (2014) 064308 [arXiv:1403.7860] [INSPIRE].
ADS
Google Scholar
J. Engel, Uncertainties in nuclear matrix elements for neutrinoless double-beta decay, J. Phys.
G 42 (2015) 034017 [INSPIRE].
ADS
Article
Google Scholar
S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, arXiv:1601.07512 [INSPIRE].
M.C. Gonzalez-García, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP
11 (2014) 052 [arXiv:1409.5439] [INSPIRE].
ADS
Article
Google Scholar
Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
GERDA collaboration, M. Agostini et al., Results on Neutrinoless Double-β Decay of
76
Ge from Phase I of the GERDA Experiment, Phys. Rev. Lett.
111 (2013) 122503 [arXiv:1307.4720] [INSPIRE].
EXO-200 collaboration, J.B. Albert et al., Search for Majorana neutrinos with the first two years of EXO-200 data, Nature
510 (2014) 229 [arXiv:1402.6956] [INSPIRE].
KamLAND-Zen collaboration, K. Asakura et al., Results from KamLAND-Zen, AIP Conf. Proc.
1666 (2015) 170003 [arXiv:1409.0077] [INSPIRE].
G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev.
D 57 (1998) 3873 [physics/9711021] [INSPIRE].
ADS
Google Scholar
J.J. Gomez-Cadenas et al., Sense and sensitivity of double beta decay experiments, JCAP
06 (2011) 007 [arXiv:1010.5112] [INSPIRE].
ADS
Article
Google Scholar
D. Nygren, High-pressure xenon gas electroluminescent TPC for 0nu beta beta-decay search, Nucl. Instrum. Meth.
A 603 (2009) 337 [INSPIRE].
ADS
Article
Google Scholar
K. Lung et al., Characterization of the Hamamatsu R11410-10 3-Inch Photomultiplier Tube for Liquid Xenon Dark Matter Direct Detection Experiments, Nucl. Instrum. Meth.
A 696 (2012) 32 [arXiv:1202.2628] [INSPIRE].
ADS
Article
Google Scholar
Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys.
C 38 (2014) 090001 [INSPIRE].
S.-C. Wu, Nuclear data sheets for A = 214, Nucl. Data Sheets
110 (2009) 681.
ADS
Article
Google Scholar
M.J. Martin, Nuclear data sheets for A = 208, Nucl. Data Sheets
108 (2007) 1583.
ADS
Article
Google Scholar
V. Álvarez et al., Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements, 2013 JINST
8 T01002 [arXiv:1211.3961] [INSPIRE].
NEXT collaboration, T. Dafni et al., Results of the material screening program of the NEXT experiment, arXiv:1411.1222 [INSPIRE].
NEXT collaboration, S. Cebrián et al., Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment, 2015 JINST
10 P05006 [arXiv:1411.1433] [INSPIRE].
S. Cebrián et al., Radon and material radiopurity assessment for the NEXT double beta decay experiment, AIP Conf. Proc.
1672 (2015) 060002 [arXiv:1505.07052] [INSPIRE].
Article
Google Scholar
D.S. Leonard et al., Systematic study of trace radioactive impurities in candidate construction materials for EXO-200, Nucl. Instrum. Meth.
A 591 (2008) 490 [arXiv:0709.4524] [INSPIRE].
ADS
Article
Google Scholar
M. Auger et al., The EXO-200 detector, part I: Detector design and construction, 2012 JINST
7 P05010 [arXiv:1202.2192] [INSPIRE].
A. Bettini, The Canfranc Underground Laboratory (LSC), Eur. Phys. J. Plus
127 (2012) 112 [INSPIRE].
Article
Google Scholar
I. Bandac, Gamma flux at the LSC, private communication (2013).
I. Bandac, Radón y radiación ambiental en el Laboratorio Subterráneo de Canfranc (LSC), Radioprotección
XXI (2014) 24.
NEMO collaboration, A. Nachab, Radon reduction and radon monitoring in the NEMO experiment, AIP Conf. Proc.
897 (2007) 35 [INSPIRE].
DarkSide collaboration, M. Bossa, DarkSide-50, a background free experiment for dark matter searches, 2014 JINST
9 C01034 [INSPIRE].
NEXT collaboration, V. Alvarez et al., Ionization and scintillation response of high-pressure xenon gas to alpha particles, 2013 JINST
8 P05025 [arXiv:1211.4508] [INSPIRE].
NEXT collaboration, L. Serra et al., An improved measurement of electron-ion recombination in high-pressure xenon gas, 2015 JINST
10 P03025 [arXiv:1412.3573] [INSPIRE].
EXO-200 collaboration, J.B. Albert et al., Improved measurement of the 2νββ half-life of
136
Xe with the EXO-200 detector, Phys. Rev.
C 89 (2014) 015502 [arXiv:1306.6106] [INSPIRE].
J.B. Albert et al., Investigation of radioactivity-induced backgrounds in EXO-200, Phys. Rev.
C 92 (2015) 015503 [arXiv:1503.06241] [INSPIRE].
ADS
Google Scholar
G. Luzón et al., Characterization of the Canfranc Underground Laboratory: Status and future plans, in Proceedings of the 6th International Workshop on the Identification of Dark Matter (IDM), Rhodes Greece (2006), pg. 514.
P. Lipari and T. Stanev, Propagation of multi-TeV muons, Phys. Rev.
D 44 (1991) 3543 [INSPIRE].
ADS
Google Scholar
E. Browne and J.K. Tuli, Nuclear data sheets for A = 137, Nucl. Data Sheets
108 (2007) 2173.
ADS
Article
Google Scholar
J. Martín-Albo, The NEXT experiment for neutrinoless double beta decay searches, Ph.D. Thesis, Universitat de València, València Spain (2015).
GEANT4 collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth.
A 506 (2003) 250 [INSPIRE].
O.A. Ponkratenko, V.I. Tretyak and Yu. G. Zdesenko, The Event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei, Phys. Atom. Nucl.
63 (2000) 1282 [nucl-ex/0104018] [INSPIRE].
T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to algorithms, third edition, MIT Press, Cambridge U.S.A. (2009).
J. Neyman and E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Phil. Trans. Roy. Soc. Lond.
A 231 (1933) 289.
ADS
Article
MATH
Google Scholar
NEMO-3 collaboration, R. Arnold et al., Search for neutrinoless double-beta decay of
100
M o with the NEMO-3 detector, Phys. Rev.
D 89 (2014) 111101 [arXiv:1311.5695] [INSPIRE].