Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
SIMP spectroscopy
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Searching for inelastic dark matter with future LHC experiments

08 August 2022

Enrico Bertuzzo, Andre Scaffidi & Marco Taoso

Searching for lepton portal dark matter with colliders and gravitational waves

25 June 2021

Jia Liu, Xiao-Ping Wang & Ke-Pan Xie

A global analysis of resonance-enhanced light scalar dark matter

19 January 2023

Tobias Binder, Sreemanti Chakraborti, … Yu Watanabe

Split SIMPs with decays

08 October 2020

Andrey Katz, Ennio Salvioni & Bibhushan Shakya

Probing the explanation of the muon (g-2) anomaly and thermal light dark matter with the semi-visible dark photon channel

30 October 2021

C. Cazzaniga, P. Odagiu, … NA64 Collaboration

Light and darkness: consistently coupling dark matter to photons via effective operators

09 March 2021

Chiara Arina, Andrew Cheek, … Luca Pagani

Strongly interacting dark sectors in the early Universe and at the LHC through a simplified portal

27 January 2020

Elias Bernreuther, Felix Kahlhoefer, … Patrick Tunney

Unraveling the Scotogenic model at muon collider

12 December 2022

Jiao Liu, Zhi-Long Han, … Honglei Li

Collider probes of singlet fermionic dark matter scenarios for the Fermi gamma-ray excess

06 December 2018

Yeong Gyun Kim, Chan Beom Park & Seodong Shin

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 16 May 2016

SIMP spectroscopy

  • Yonit Hochberg1,2,
  • Eric Kuflik3 &
  • Hitoshi Murayama1,2,4,5 

Journal of High Energy Physics volume 2016, Article number: 90 (2016) Cite this article

  • 504 Accesses

  • 93 Citations

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3 → 2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e + e − colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].

    Article  ADS  Google Scholar 

  2. E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].

    Article  ADS  Google Scholar 

  3. Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Witten, Global aspects of Current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z 3 symmetry, JHEP 09 (2015) 063 [arXiv:1505.00960] [INSPIRE].

    Article  Google Scholar 

  8. H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z ′ -portal, Phys. Lett. B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].

    Article  ADS  Google Scholar 

  9. N. Bernal, C. Garcia-Cely and R. Rosenfeld, WIMP and SIMP dark matter from the spontaneous breaking of a global group, JCAP 04 (2015) 012 [arXiv:1501.01973] [INSPIRE].

    Article  ADS  Google Scholar 

  10. P. Schwaller, Gravitational waves from a dark phase transition, Phys. Rev. Lett. 115 (2015) 181101 [arXiv:1504.07263] [INSPIRE].

    Article  ADS  Google Scholar 

  11. N. Bernal and X. Chu, Z 2 SIMP dark matter, JCAP 01 (2016) 006 [arXiv:1510.08527] [INSPIRE].

    Article  ADS  Google Scholar 

  12. N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye and B. Zaldivar, Production regimes for self-interacting dark matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Hansen, K. Langæble and F. Sannino, SIMP model at NNLO in chiral perturbation theory, Phys. Rev. D 92 (2015) 075036 [arXiv:1507.01590] [INSPIRE].

    ADS  Google Scholar 

  14. D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596 [astro-ph/0312273] [INSPIRE].

  15. M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].

  16. S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the self-interaction cross-section of dark matter from numerical simulations of the merging galaxy cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Rocha et al., Cosmological simulations with self-interacting dark matter I: constant density cores and substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological simulations with self-interacting dark matter II: halo shapes vs. observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].

  19. D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].

  20. W.J.G. de Blok, The core-cusp problem, Adv. Astron. 2010 (2010) 789293 [arXiv:0910.3538] [INSPIRE].

    Google Scholar 

  21. M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc. 415 (2011) L40 [arXiv:1103.0007] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Kaplinghat, S. Tulin and H.-B. Yu, Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Zavala, M. Vogelsberger and M.G. Walker, Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals, Monthly Notices of the Royal Astronomical Society: Letters 431 (2013) L20 [arXiv:1211.6426] [INSPIRE].

  24. M. Vogelsberger, J. Zavala and A. Loeb, Subhaloes in self-interacting galactic dark matter haloes, Mon. Not. Roy. Astron. Soc. 423 (2012) 3740 [arXiv:1201.5892] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Massey et al., The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827, Mon. Not. Roy. Astron. Soc. 449 (2015) 3393 [arXiv:1504.03388] [INSPIRE].

    Article  ADS  Google Scholar 

  26. F. Kahlhoefer, K. Schmidt-Hoberg, J. Kummer and S. Sarkar, On the interpretation of dark matter self-interactions in Abell 3827, Mon. Not. Roy. Astron. Soc. 452 (2015) L54 [arXiv:1504.06576] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New electron beam-dump experiments to search for MeV to few-GeV dark matter, Phys. Rev. D 88 (2013) 114015 [arXiv:1307.6554] [INSPIRE].

    ADS  Google Scholar 

  29. R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining light dark matter with low-energy e + e − colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].

    Article  ADS  Google Scholar 

  30. D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating dark photons with high-energy colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].

    Article  ADS  Google Scholar 

  31. DELPHI, OPAL, LEP Electroweak, ALEPH, L3 collaboration, S. Schael et al., Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].

  32. H. Baer et al., The International Linear Collider technical design report — Volume 2: physics, arXiv:1306.6352 [INSPIRE].

  33. BaBar collaboration, J.P. Lees et al., Search for a dark photon in e + e − collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].

  34. CMS collaboration, Properties of the Higgs-like boson in the decay H → ZZ → 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).

  35. CMS collaboration, Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2013) 030 [arXiv:1310.7291] [INSPIRE].

  36. J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z ′ -mediated dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].

    Article  ADS  Google Scholar 

  37. ATLAS collaboration, Search for high-mass dilepton resonances in 20 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, ATLAS-CONF-2013-017 (2013).

  38. BaBar collaboration, B. Aubert et al., Search for Invisible decays of a light scalar in radiative transitions Y3S → γA 0, arXiv:0808.0017 [INSPIRE].

  39. I.M. Shoemaker and L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].

    ADS  Google Scholar 

  40. DELPHI collaboration, J. Abdallah et al., Search for one large extra dimension with the DELPHI detector at LEP, Eur. Phys. J. C 60 (2009) 17 [arXiv:0901.4486] [INSPIRE].

  41. S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev. 182 (1969) 1517 [INSPIRE].

    Article  ADS  Google Scholar 

  42. E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Elastically decoupling dark matter, arXiv:1512.04545 [INSPIRE].

  43. M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current dark matter annihilation constraints from CMB and low-redshift data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].

    ADS  Google Scholar 

  44. R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining light dark matter with diffuse X-ray and gamma-ray observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

  46. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].

  47. B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].

    ADS  Google Scholar 

  48. Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  49. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].

  50. J. Kang and M.A. Luty, Macroscopic strings and ‘quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [INSPIRE].

    Article  ADS  Google Scholar 

  51. F.A. Berends, G.J.H. Burgers, C. Mana, M. Martinez and W.L. van Neerven, Radiative corrections to the process e + e − → neutrino anti-neutrino γ, Nucl. Phys. B 301 (1988) 583 [INSPIRE].

    Article  ADS  Google Scholar 

  52. C. Hearty, T. Higuchi, Y. Iwasaki, T. Iwashita, C. Li and K. Miyabayashi, private communications.

  53. SuperCDMS collaboration, R. Agnese et al., Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment, Phys. Rev. Lett. 112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].

  54. SuperCDMS collaboration, R. Agnese et al., Search for low-mass weakly interacting massive particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].

  55. SuperCDMS collaboration, R. Agnese et al., New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].

  56. R. Essig, J. Mardon and T. Volansky, Direct detection of sub-GeV dark matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

    ADS  Google Scholar 

  57. P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor probes of light dark matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].

    Article  Google Scholar 

  58. Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting detectors for superlight dark matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].

    Article  ADS  Google Scholar 

  59. Y. Hochberg, M. Pyle, Y. Zhao and K.M. Zurek, Detecting superlight dark matter with Fermi-degenerate materials, arXiv:1512.04533 [INSPIRE].

  60. R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First direct detection limits on sub-GeV dark matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].

    Article  ADS  Google Scholar 

  61. XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088] [INSPIRE].

  62. R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct detection of sub-GeV dark matter with semiconductor targets, arXiv:1509.01598 [INSPIRE].

  63. Belle, BaBar collaboration, A.J. Bevan et al., The physics of the B factories, Eur. Phys. J. C 74 (2014) 3026 [arXiv:1406.6311] [INSPIRE].

  64. Z. Fodor, private communications.

  65. A. Soffer, Constraints on dark forces from the B factories and low-energy experiments, arXiv:1409.5263 [INSPIRE].

  66. S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, arXiv:1504.04855 [INSPIRE].

  67. A. Chaus, J. List and M. Titov, Model-independent WIMP searches at ILC with single photon, a talk presented at the International Workshop on Future Linear Colliders , October 6-10, Belgrade, Serbia (2014).

  68. ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].

  69. S. Riemann, Fermion pair production at a linear collider — A sensitive tool for new physics searches, http://tesla.desy.de/new pages/TDR CD/PartIII/references/LC-TH-2001-007.pdf.

  70. R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A ′ decaying to e + e −, JHEP 02 (2011) 009 [arXiv:1001.2557] [INSPIRE].

    ADS  Google Scholar 

  71. N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [INSPIRE].

    Article  ADS  Google Scholar 

  73. Y. Bai and Z. Han, Measuring the dark force at the LHC, Phys. Rev. Lett. 103 (2009) 051801 [arXiv:0902.0006] [INSPIRE].

    Article  ADS  Google Scholar 

  74. C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Lepton jets in (supersymmetric) electroweak processes, JHEP 04 (2010) 116 [arXiv:0909.0290] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. P. Schwaller, D. Stolarski and A. Weiler, Emerging jets, JHEP 05 (2015) 059 [arXiv:1502.05409] [INSPIRE].

    Article  ADS  Google Scholar 

  76. J. Erlich, An introduction to holographic QCD for nonspecialists, Contemp. Phys. 56 (2015) 159 [arXiv:1407.5002] [INSPIRE].

    Article  ADS  Google Scholar 

  77. C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [INSPIRE].

  78. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

  79. D. Garcia Gudino and G. Toledo Sanchez, The ωρπ coupling and the influence of heavier esonances, J. Phys. Conf. Ser. 378 (2012) 012040 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, U.S.A.

    Yonit Hochberg & Hitoshi Murayama

  2. Department of Physics, University of California, Berkeley, CA, 94720, U.S.A.

    Yonit Hochberg & Hitoshi Murayama

  3. Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, U.S.A.

    Eric Kuflik

  4. Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, 277-8583, Japan

    Hitoshi Murayama

  5. Center for Japanese Studies, University of California, Berkeley, CA, 94720, U.S.A.

    Hitoshi Murayama

Authors
  1. Yonit Hochberg
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Eric Kuflik
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Hitoshi Murayama
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Eric Kuflik.

Additional information

ArXiv ePrint: 1512.07917

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hochberg, Y., Kuflik, E. & Murayama, H. SIMP spectroscopy. J. High Energ. Phys. 2016, 90 (2016). https://doi.org/10.1007/JHEP05(2016)090

Download citation

  • Received: 08 January 2016

  • Revised: 05 April 2016

  • Accepted: 09 May 2016

  • Published: 16 May 2016

  • DOI: https://doi.org/10.1007/JHEP05(2016)090

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Chiral Lagrangians
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.