Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A 750 GeV portal: LHC phenomenology and dark matter candidates

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 May 2016
  • Volume 2016, article number 89, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
A 750 GeV portal: LHC phenomenology and dark matter candidates
Download PDF
  • Francesco D’Eramo1,2,
  • Jordy de Vries3 &
  • Paolo Panci4 
  • 463 Accesses

  • 37 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise. Pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.

Article PDF

Download to read the full article text

Similar content being viewed by others

Status of the scalar singlet dark matter model

Article Open access 23 August 2017

Augury of darkness: the low-mass dark Z ′ portal

Article Open access 28 April 2017

Model-independent constraints with extended dark matter EFT

Article Open access 27 October 2020

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.
  • Experimental Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081 (2015).

  2. CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004 (2015).

  3. G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].

    Article  ADS  Google Scholar 

  5. B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  6. R.J. Scherrer and M.S. Turner, On the relic, cosmic abundance of stable weakly interacting massive particles, Phys. Rev. D 33 (1986) 1585 [Erratum ibid. D 34 (1986) 3263] [INSPIRE].

  7. M. Srednicki, R. Watkins and K.A. Olive, Calculations of relic densities in the early universe, Nucl. Phys. B 310 (1988) 693 [INSPIRE].

    Article  ADS  Google Scholar 

  8. Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].

    ADS  Google Scholar 

  9. A. Falkowski, O. Slone and T. Volansky, Phenomenology of a 750 GeV singlet, JHEP 02 (2016) 152 [arXiv:1512.05777] [INSPIRE].

    Article  ADS  Google Scholar 

  10. L. Berthier, J.M. Cline, W. Shepherd and M. Trott, Effective interpretations of a diphoton excess, JHEP 04 (2016) 084 [arXiv:1512.06799] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Backović, A. Mariotti and D. Redigolo, Di-photon excess illuminates dark matter, JHEP 03 (2016) 157 [arXiv:1512.04917] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting dark matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].

    ADS  Google Scholar 

  13. R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M.T. Frandsen, U. Haisch, F. Kahlhoefer, P. Mertsch and K. Schmidt-Hoberg, Loop-induced dark matter direct detection signals from γ-ray lines, JCAP 10 (2012) 033 [arXiv:1207.3971] [INSPIRE].

    Article  ADS  Google Scholar 

  15. U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 04 (2013) 050 [arXiv:1302.4454] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].

    Article  ADS  Google Scholar 

  17. L. Vecchi, WIMPs and un-naturalness, arXiv:1312.5695 [INSPIRE].

  18. J. Kopp, L. Michaels and J. Smirnov, Loopy constraints on leptophilic dark matter and internal bremsstrahlung, JCAP 04 (2014) 022 [arXiv:1401.6457] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Crivellin, F. D’Eramo and M. Procura, New constraints on dark matter effective theories from standard model loops, Phys. Rev. Lett. 112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Crivellin and U. Haisch, Dark matter direct detection constraints from gauge bosons loops, Phys. Rev. D 90 (2014) 115011 [arXiv:1408.5046] [INSPIRE].

    ADS  Google Scholar 

  21. F. D’Eramo and M. Procura, Connecting dark matter UV complete models to direct detection rates via effective field theory, JHEP 04 (2015) 054 [arXiv:1411.3342] [INSPIRE].

    Article  Google Scholar 

  22. R.J. Hill and M.P. Solon, Standard model anatomy of WIMP dark matter direct detection. II. QCD analysis and hadronic matrix elements, Phys. Rev. D 91 (2015) 043505 [arXiv:1409.8290] [INSPIRE].

    ADS  Google Scholar 

  23. A. Berlin, D.S. Robertson, M.P. Solon and K.M. Zurek, The bino variations: effective field theory methods for dark matter direct detection, arXiv:1511.05964 [INSPIRE].

  24. S. Knapen, T. Melia, M. Papucci and K. Zurek, Rays of light from the LHC, Phys. Rev. D 93 (2016) 075020 [arXiv:1512.04928] [INSPIRE].

    ADS  Google Scholar 

  25. D. Buttazzo, A. Greljo and D. Marzocca, Knocking on new physics’ door with a scalar resonance, Eur. Phys. J. C 76 (2016) 116 [arXiv:1512.04929] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Franceschini et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144 [arXiv:1512.04933] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Di Chiara, L. Marzola and M. Raidal, First interpretation of the 750 GeV di-photon resonance at the LHC, arXiv:1512.04939 [INSPIRE].

  28. S.D. McDermott, P. Meade and H. Ramani, Singlet scalar resonances and the diphoton excess, Phys. Lett. B 755 (2016) 353 [arXiv:1512.05326] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Ellis, S.A.R. Ellis, J. Quevillon, V. Sanz and T. You, On the interpretation of a possible ∼750 GeV particle decaying into γγ, JHEP 03 (2016) 176 [arXiv:1512.05327] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Low, A. Tesi and L.-T. Wang, A pseudoscalar decaying to photon pairs in the early LHC Run 2 data, JHEP 03 (2016) 108 [arXiv:1512.05328] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R.S. Gupta, S. Jäger, Y. Kats, G. Perez and E. Stamou, Interpreting a 750 GeV diphoton resonance, arXiv:1512.05332 [INSPIRE].

  32. B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, Interpretation of the diphoton excess at CMS and ATLAS, Phys. Rev. D 93 (2016) 055032 [arXiv:1512.05439] [INSPIRE].

    ADS  Google Scholar 

  33. J. Chakrabortty, A. Choudhury, P. Ghosh, S. Mondal and T. Srivastava, Di-photon resonance around 750 GeV: shedding light on the theory underneath, arXiv:1512.05767 [INSPIRE].

  34. P. Agrawal, J. Fan, B. Heidenreich, M. Reece and M. Strassler, Experimental considerations motivated by the diphoton excess at the LHC, arXiv:1512.05775 [INSPIRE].

  35. A. Alves, A.G. Dias and K. Sinha, The 750 GeV S-cion: where else should we look for it?, Phys. Lett. B 757 (2016) 39 [arXiv:1512.06091] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. J.S. Kim, K. Rolbiecki and R.R. de Austri, Model-independent combination of diphoton constraints at 750 GeV, arXiv:1512.06797 [INSPIRE].

  37. N. Craig, P. Draper, C. Kilic and S. Thomas, Shedding light on diphoton resonances, arXiv:1512.07733 [INSPIRE].

  38. W. Altmannshofer et al., On the 750 GeV di-photon excess, arXiv:1512.07616 [INSPIRE].

  39. C. Csáki, J. Hubisz and J. Terning, Minimal model of a diphoton resonance: production without gluon couplings, Phys. Rev. D 93 (2016) 035002 [arXiv:1512.05776] [INSPIRE].

    ADS  Google Scholar 

  40. S. Fichet, G. von Gersdorff and C. Royon, Scattering light by light at 750 GeV at the LHC, Phys. Rev. D 93 (2016) 075031 [arXiv:1512.05751] [INSPIRE].

    ADS  Google Scholar 

  41. C. Csáki, J. Hubisz, S. Lombardo and J. Terning, Gluon vs. photon production of a 750 GeV diphoton resonance, arXiv:1601.00638 [INSPIRE].

  42. A.D. Martin and M.G. Ryskin, Advantages of exclusive γγ production to probe high mass systems, J. Phys. G 43 (2016) 04LT02 [arXiv:1601.07774] [INSPIRE].

    Article  Google Scholar 

  43. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  45. L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, The production of a diphoton resonance via photon-photon fusion, JHEP 03 (2016) 182 [arXiv:1601.07187] [INSPIRE].

    Article  ADS  Google Scholar 

  46. ATLAS collaboration, A search for \( t\overline{t} \) resonances using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 148 [arXiv:1505.07018] [INSPIRE].

  47. CMS collaboration, Search for resonant \( t\overline{t} \) production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 012001 [arXiv:1506.03062] [INSPIRE].

  48. ATLAS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 032004 [arXiv:1504.05511] [INSPIRE].

  49. CMS collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 750 (2015) 494 [arXiv:1506.02301] [INSPIRE].

  50. ATLAS collaboration, Search for an additional, heavy Higgs boson in the H → ZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].

  51. CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].

  52. ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 01 (2016) 032 [arXiv:1509.00389] [INSPIRE].

  53. ATLAS collaboration, Search for new resonances in Wγ and Zγ final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 428 [arXiv:1407.8150] [INSPIRE].

  54. ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].

  55. CMS collaboration, Search for resonances decaying to dijet final states at \( \sqrt{s}=8 \) TeV with scouting data, CMS-PAS-EXO-14-005 (2015).

  56. Y. Mambrini, G. Arcadi and A. Djouadi, The LHC diphoton resonance and dark matter, Phys. Lett. B 755 (2016) 426 [arXiv:1512.04913] [INSPIRE].

    Article  ADS  Google Scholar 

  57. X.-J. Bi, Q.-F. Xiang, P.-F. Yin and Z.-H. Yu, The 750 GeV diphoton excess at the LHC and dark matter constraints, arXiv:1512.06787 [INSPIRE].

  58. M. Bauer and M. Neubert, Flavor anomalies, the diphoton excess and a dark matter candidate, arXiv:1512.06828 [INSPIRE].

  59. P.S.B. Dev and D. Teresi, Asymmetric dark matter in the Sun and the diphoton excess at the LHC, arXiv:1512.07243 [INSPIRE].

  60. H. Davoudiasl and C. Zhang, 750 GeV messenger of dark conformal symmetry breaking, Phys. Rev. D 93 (2016) 055006 [arXiv:1512.07672] [INSPIRE].

    ADS  Google Scholar 

  61. H. Han, S. Wang and S. Zheng, Dark matter theories in the light of diphoton excess, arXiv:1512.07992 [INSPIRE].

  62. J.-C. Park and S.C. Park, Indirect signature of dark matter with the diphoton resonance at 750 GeV, arXiv:1512.08117 [INSPIRE].

  63. X.-J. Huang, W.-H. Zhang and Y.-F. Zhou, A 750 GeV dark matter messenger at the galactic center, arXiv:1512.08992 [INSPIRE].

  64. K. Ghorbani and H. Ghorbani, The 750 GeV diphoton excess from a pseudoscalar in fermionic dark matter scenario, arXiv:1601.00602 [INSPIRE].

  65. L.D. Landau, On the angular momentum of a system of two photons, Dokl. Akad. Nauk Ser. Fiz. 60 (1948) 207 [INSPIRE].

    Google Scholar 

  66. C.-N. Yang, Selection rules for the dematerialization of a particle into two photons, Phys. Rev. 77 (1950) 242 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg, Tricking Landau-Yang: how to obtain the diphoton excess from a vector resonance, Phys. Lett. B 755 (2016) 145 [arXiv:1512.06833] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J. de Blas, J. Santiago and R. Vega-Morales, New vector bosons and the diphoton excess, arXiv:1512.07229 [INSPIRE].

  69. K. Das and S.K. Rai, The 750 GeV diphoton excess in a U(1) hidden symmetry model, arXiv:1512.07789 [INSPIRE].

  70. C. Han, H.M. Lee, M. Park and V. Sanz, The diphoton resonance as a gravity mediator of dark matter, Phys. Lett. B 755 (2016) 371 [arXiv:1512.06376] [INSPIRE].

    Article  ADS  Google Scholar 

  71. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  72. ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [Erratum ibid. C 75 (2015) 408] [arXiv:1502.01518] [INSPIRE].

  73. CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].

  74. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  75. C. Degrande et al., UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  76. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  77. J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].

    ADS  Google Scholar 

  78. D. Barducci, A. Goudelis, S. Kulkarni and D. Sengupta, One jet to rule them all: monojet constraints and invisible decays of a 750 GeV diphoton resonance, arXiv:1512.06842 [INSPIRE].

  79. LUX collaboration, D.S. Akerib et al., Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data, Phys. Rev. Lett. 116 (2016) 161301 [arXiv:1512.03506] [INSPIRE].

  80. A. Dobi, LUX-ZEPLIN (LZ) status, talk given at WIN-2015, Heidelberg Germany (2015), https://www.mpi-hd.mpg.de/WIN2015/talks/astro4_dobi.pdf.

  81. M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].

    Article  ADS  Google Scholar 

  82. G. Ovanesyan and L. Vecchi, Direct detection of dark matter polarizability, JHEP 07 (2015) 128 [arXiv:1410.0601] [INSPIRE].

    Article  ADS  Google Scholar 

  83. A. Crivellin, M. Hoferichter and M. Procura, Accurate evaluation of hadronic uncertainties in spin-independent WIMP-nucleon scattering: disentangling two- and three-flavor effects, Phys. Rev. D 89 (2014) 054021 [arXiv:1312.4951] [INSPIRE].

    ADS  Google Scholar 

  84. M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, High-precision determination of the pion-nucleon σ term from Roy-Steiner equations, Phys. Rev. Lett. 115 (2015) 092301 [arXiv:1506.04142] [INSPIRE].

    Article  ADS  Google Scholar 

  85. J.M. Alarcón, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].

    ADS  Google Scholar 

  86. P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].

    ADS  Google Scholar 

  87. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The effective field theory of dark matter direct detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].

    Article  ADS  Google Scholar 

  88. Fermi-LAT collaboration, M. Ackermann et al., Updated search for spectral lines from galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].

  89. HESS collaboration, A. Abramowski et al., Search for photon-linelike signatures from dark matter annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].

  90. Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

  91. A. Ibarra, A.S. Lamperstorfer, S. López-Gehler, M. Pato and G. Bertone, On the sensitivity of CTA to gamma-ray boxes from multi-TeV dark matter, JCAP 09 (2015) 048 [arXiv:1503.06797] [INSPIRE].

    Article  ADS  Google Scholar 

  92. M. Cirelli et al., PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection, JCAP 03 (2011) 051 [Erratum ibid. 10 (2012) E01] [arXiv:1012.4515] [INSPIRE].

  93. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  94. K. Harigaya and Y. Nomura, Composite models for the 750 GeV diphoton excess, Phys. Lett. B 754 (2016) 151 [arXiv:1512.04850] [INSPIRE].

    Article  ADS  Google Scholar 

  95. A. Angelescu, A. Djouadi and G. Moreau, Scenarii for interpretations of the LHC diphoton excess: two Higgs doublets and vector-like quarks and leptons, Phys. Lett. B 756 (2016) 126 [arXiv:1512.04921] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  96. Y. Nakai, R. Sato and K. Tobioka, Footprints of new strong dynamics via anomaly and the 750 GeV diphoton, Phys. Rev. Lett. 116 (2016) 151802 [arXiv:1512.04924] [INSPIRE].

    Article  ADS  Google Scholar 

  97. B. Bellazzini, R. Franceschini, F. Sala and J. Serra, Goldstones in diphotons, JHEP 04 (2016) 072 [arXiv:1512.05330] [INSPIRE].

    Article  ADS  Google Scholar 

  98. K.M. Patel and P. Sharma, Interpreting 750 GeV diphoton excess in SU(5) grand unified theory, Phys. Lett. B 757 (2016) 282 [arXiv:1512.07468] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  99. L.J. Hall, K. Harigaya and Y. Nomura, 750 GeV diphotons: implications for supersymmetric unification, JHEP 03 (2016) 017 [arXiv:1512.07904] [INSPIRE].

    Article  ADS  Google Scholar 

  100. F. Goertz, J.F. Kamenik, A. Katz and M. Nardecchia, Indirect constraints on the scalar di-photon resonance at the LHC, arXiv:1512.08500 [INSPIRE].

  101. Y. Jiang, Y.-Y. Li and T. Liu, 750 GeV resonance in the gauged U(1)′-extended MSSM, arXiv:1512.09127 [INSPIRE].

  102. D. Bardhan et al., Radion candidate for the LHC diphoton resonance, arXiv:1512.06674 [INSPIRE].

  103. J.J. Heckman, 750 GeV diphotons from a D3-brane, Nucl. Phys. B 906 (2016) 231 [arXiv:1512.06773] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. R. Mertig, M. Böhm and A. Denner, Feyn Calc — computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  105. J.C. Collins, A. Duncan and S.D. Joglekar, Trace and dilatation anomalies in gauge theories, Phys. Rev. D 16 (1977) 438 [INSPIRE].

    ADS  Google Scholar 

  106. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].

    Article  ADS  Google Scholar 

  107. Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  108. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, U.S.A.

    Francesco D’Eramo

  2. Santa Cruz Institute for Particle Physics, 1156 High St., Santa Cruz, CA, 95064, U.S.A.

    Francesco D’Eramo

  3. Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Jordy de Vries

  4. Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris, 75014, France

    Paolo Panci

Authors
  1. Francesco D’Eramo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jordy de Vries
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Paolo Panci
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Francesco D’Eramo.

Additional information

ArXiv ePrint: 1601.01571

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Eramo, F., de Vries, J. & Panci, P. A 750 GeV portal: LHC phenomenology and dark matter candidates. J. High Energ. Phys. 2016, 89 (2016). https://doi.org/10.1007/JHEP05(2016)089

Download citation

  • Received: 09 February 2016

  • Revised: 06 April 2016

  • Accepted: 12 April 2016

  • Published: 16 May 2016

  • DOI: https://doi.org/10.1007/JHEP05(2016)089

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature