Revisiting scalar quark hidden sector in light of 750-GeV diphoton resonance

  • Cheng-Wei Chiang
  • Masahiro Ibe
  • Tsutomu T. Yanagida
Open Access
Regular Article - Theoretical Physics


We revisit the model of a CP -even singlet scalar resonance proposed in arXiv:1507.02483, where the resonance appears as the lightest composite state made of scalar quarks participating in hidden strong dynamics. We show that the model can consistently explain the excess of diphoton events with an invariant mass around 750 GeV reported by both the ATLAS and CMS experiments. We also discuss the nature of the charged composite states in the TeV range which accompany to the neutral scalar. Due to inseparability of the dynamical scale and the mass of the resonance, the model also predicts signatures associated with the hidden dynamics such as leptons, jets along with multiple photons at future collider experiments. We also associate the TeV-scale dynamics behind the resonance with an explanation of dark matter.


Beyond Standard Model Technicolor and Composite Models GUT 


  1. [1]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081 (2015).
  2. [2]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004 (2015).
  3. [3]
    D. Buttazzo, A. Greljo and D. Marzocca, Knocking on new physics’ door with a scalar resonance, Eur. Phys. J. C 76 (2016) 116 [arXiv:1512.04929] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Knapen, T. Melia, M. Papucci and K. Zurek, Rays of light from the LHC, Phys. Rev. D 93 (2016) 075020 [arXiv:1512.04928] [INSPIRE].ADSGoogle Scholar
  5. [5]
    R. Franceschini et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144 [arXiv:1512.04933] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.D. McDermott, P. Meade and H. Ramani, Singlet Scalar Resonances and the Diphoton Excess, Phys. Lett. B 755 (2016) 353 [arXiv:1512.05326] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Ellis, S.A.R. Ellis, J. Quevillon, V. Sanz and T. You, On the Interpretation of a Possible ∼ 750 GeV Particle Decaying into γγ, JHEP 03 (2016) 176 [arXiv:1512.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Low, A. Tesi and L.-T. Wang, A pseudoscalar decaying to photon pairs in the early LHC Run 2 data, JHEP 03 (2016) 108 [arXiv:1512.05328] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R.S. Gupta, S. Jäger, Y. Kats, G. Perez and E. Stamou, Interpreting a 750 GeV Diphoton Resonance, arXiv:1512.05332 [INSPIRE].
  10. [10]
    B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, Interpretation of the diphoton excess at CMS and ATLAS, Phys. Rev. D 93 (2016) 055032 [arXiv:1512.05439] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Falkowski, O. Slone and T. Volansky, Phenomenology of a 750 GeV Singlet, JHEP 02 (2016) 152 [arXiv:1512.05777] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Alves, A.G. Dias and K. Sinha, The 750 GeV S-cion: Where else should we look for it?, Phys. Lett. B 757 (2016) 39 [arXiv:1512.06091] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.S. Kim, K. Rolbiecki and R. Ruiz de Austri, Model-independent combination of diphoton constraints at 750 GeV, Eur. Phys. J. C 76 (2016) 251 [arXiv:1512.06797] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    L. Berthier, J.M. Cline, W. Shepherd and M. Trott, Effective interpretations of a diphoton excess, JHEP 04 (2016) 084 [arXiv:1512.06799] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Craig, P. Draper, C. Kilic and S. Thomas, Shedding Light on Diphoton Resonances, arXiv:1512.07733 [INSPIRE].
  16. [16]
    K. Harigaya and Y. Nomura, Composite Models for the 750 GeV Diphoton Excess, Phys. Lett. B 754 (2016) 151 [arXiv:1512.04850] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Nakai, R. Sato and K. Tobioka, Footprints of New Strong Dynamics via Anomaly and the 750 GeV Diphoton, Phys. Rev. Lett. 116 (2016) 151802 [arXiv:1512.04924] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Di Chiara, L. Marzola and M. Raidal, First interpretation of the 750 GeV di-photon resonance at the LHC, arXiv:1512.04939 [INSPIRE].
  19. [19]
    B. Bellazzini, R. Franceschini, F. Sala and J. Serra, Goldstones in Diphotons, JHEP 04 (2016) 072 [arXiv:1512.05330] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Matsuzaki and K. Yamawaki, 750 GeV Diphoton Signal from One-Family Walking Technipion, arXiv:1512.05564 [INSPIRE].
  21. [21]
    L. Bian, N. Chen, D. Liu and J. Shu, A hidden confining world on the 750 GeV diphoton excess, arXiv:1512.05759 [INSPIRE].
  22. [22]
    W. Liao and H.-q. Zheng, Scalar resonance at 750 GeV as composite of heavy vector-like fermions, arXiv:1512.06741 [INSPIRE].
  23. [23]
    J.M. Cline and Z. Liu, LHC diphotons from electroweakly pair-produced composite pseudoscalars, arXiv:1512.06827 [INSPIRE].
  24. [24]
    A. Belyaev, G. Cacciapaglia, H. Cai, T. Flacke, A. Parolini and H. Serôdio, Singlets in Composite Higgs Models in light of the LHC di-photon searches, arXiv:1512.07242 [INSPIRE].
  25. [25]
    C.-W. Chiang, H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Diboson Resonance as a Portal to Hidden Strong Dynamics, JHEP 11 (2015) 015 [arXiv:1507.02483] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  27. [27]
    R. Barbieri and R. Torre, Signals of single particle production at the earliest LHC, Phys. Lett. B 695 (2011) 259 [arXiv:1008.5302] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E.H. Fradkin and S.H. Shenker, Phase Diagrams of Lattice Gauge Theories with Higgs Fields, Phys. Rev. D 19 (1979) 3682 [INSPIRE].ADSGoogle Scholar
  31. [31]
    G. ’t Hooft, Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking, lectures given at the Cargése Summer Institute, Cargése France (1979).Google Scholar
  32. [32]
    S. Dimopoulos, S. Raby and L. Susskind, Light Composite Fermions, Nucl. Phys. B 173 (1980) 208 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    V.A. Novikov, L.B. Okun, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Charmonium and Gluons: Basic Experimental Facts and Theoretical Introduction, Phys. Rept. 41 (1978) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Counting 4 pis in strongly coupled supersymmetry, Phys. Lett. B 412 (1997) 301 [hep-ph/9706275] [INSPIRE].
  35. [35]
    M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev. D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].
  36. [36]
    ATLAS collaboration, A search for resonant Higgs-pair production in the bbbb final state in pp collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2014-005 (2014).
  37. [37]
    CMS collaboration, Search for new resonances in the diphoton final state in the range between 150 and 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-14-006 (2014).
  38. [38]
    [38]ATLAS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 032004 [arXiv:1504.05511] [INSPIRE].
  39. [39]
    CMS collaboration, Search for a Higgs Boson in the Mass Range from 145 to 1000 GeV Decaying to a Pair of W or Z Bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  40. [40]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 01 (2016) 032 [arXiv:1509.00389] [INSPIRE].
  41. [41]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  42. [42]
    ATLAS collaboration, Search for new resonances in W γ and Zγ final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 428 [arXiv:1407.8150] [INSPIRE].
  43. [43]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  44. [44]
    CMS Collaboration, Search for Resonances Decaying to Dijet Final States at \( \sqrt{s}=8 \) TeV with Scouting Data, CMS-PAS-EXO-14-005 (2015).
  45. [45]
    CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].
  46. [46]
    D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, Sgluon Pair Production to Next-to-Leading Order, Phys. Rev. D 85 (2012) 114024 [arXiv:1203.6358] [INSPIRE].ADSGoogle Scholar
  47. [47]
    G.M. Pruna and T. Robens, Higgs singlet extension parameter space in the light of the LHC discovery, Phys. Rev. D 88 (2013) 115012 [arXiv:1303.1150] [INSPIRE].ADSGoogle Scholar
  48. [48]
    T. Robens and T. Stefaniak, Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  50. [50]
    M. Krämer et al., Supersymmetry production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1206.2892 [INSPIRE].
  51. [51]
    C. Borschensky et al., Squark and gluino production cross sections in pp collisions at \( \sqrt{s}=13 \) , 14, 33and100TeV, Eur.Phys.J. C74 (2014) 3174 [arXiv:1407.5066] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].
  53. [53]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  54. [54]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].
  55. [55]
    G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900].ADSCrossRefGoogle Scholar
  56. [56]
    K. Hamaguchi, S. Shirai and T.T. Yanagida, Composite messenger baryon as a cold dark matter, Phys. Lett. B 654 (2007) 110 [arXiv:0707.2463] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R.M. Godbole, D.J. Miller and M.M. Muhlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP Dark Matter overcome the Nightmare Scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].ADSGoogle Scholar
  60. [60]
    R.D. Young and A.W. Thomas, Octet baryon masses and sigma terms from an SU(3) chiral extrapolation, Phys. Rev. D 81 (2010) 014503 [arXiv:0901.3310] [INSPIRE].ADSGoogle Scholar
  61. [61]
    LUX collaboration, D.S. Akerib et al., Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data, Phys. Rev. Lett. 116 (2016) 161301 [arXiv:1512.03506] [INSPIRE].
  62. [62]
    LZ collaboration, D.S. Akerib et al., LUX-ZEPLIN (LZ) Conceptual Design Report, arXiv:1509.02910 [INSPIRE].
  63. [63]
    ATLAS collaboration, Search for resonances in diphoton events with the ATLAS detector at \( \sqrt{s}=13 \) TeV,ATLAS-CONF-2016-018 (2016).
  64. [64]
    CMS collaboration, Search for new physics in high mass diphoton events in 3.3 f b −1 of proton-proton collisions at \( \sqrt{s}=13 \) TeV and combined interpretation of searches at 8 TeV and 13 TeV, CMS-PAS-EXO-16-018 (2016).
  65. [65]
    R. Franceschini et al., Digamma, what next?, arXiv:1604.06446 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Cheng-Wei Chiang
    • 1
    • 2
    • 3
  • Masahiro Ibe
    • 4
    • 5
  • Tsutomu T. Yanagida
    • 4
  1. 1.Center for Mathematics and Theoretical Physics and Department of PhysicsNational Central UniversityTaoyuanRepublic of China
  2. 2.Institute of Physics, Academia SinicaTaipeiRepublic of China
  3. 3.Physics Division, National Center for Theoretical SciencesHsinchuRepublic of China
  4. 4.Kavli IPMU (WPI), UTIASUniversity of TokyoKashiwaJapan
  5. 5.ICRR, University of TokyoKashiwaJapan

Personalised recommendations