Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Unitarity methods for Mellin moments of Drell-Yan cross sections

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 13 May 2016
  • Volume 2016, article number 79, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Unitarity methods for Mellin moments of Drell-Yan cross sections
Download PDF
  • Domenico Bonocore1,
  • Eric Laenen1,2,3 &
  • Robbert Rietkerk1,2 
  • 323 Accesses

  • 2 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We develop a method for computing Mellin moments of single inclusive cross sections such as Drell-Yan production directly from forward scattering diagrams, by invoking unitarity in the form of cutting equations. We provide a diagram-independent prescription for eliminating contributions from unwanted cuts at the level of an expansion in the reciprocal ω = 1/z variable. The modified sum over powers of ω produces the result from physical cuts only, with the nth coefficient precisely equal to the nth Mellin moment of the cross section. We demonstrate and validate our method for representative one- and two-loop diagrams.

Article PDF

Download to read the full article text

Similar content being viewed by others

Local unitarity: cutting raised propagators and localising renormalisation

Article Open access 18 October 2022

EDGE: A Simple Way to Obtain Power Corrections for Event Shape Variables

Chapter © 2024

How much joint resummation do we need?

Article Open access 09 October 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. G. ’t Hooft and M.J.G. Veltman, DIAGRAMMAR, NATO Sci. Ser. B 4 (1974) 177.

  2. Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one loop QCD computations, Ann. Rev. Nucl. Part. Sci. 46 (1996) 109 [hep-ph/9602280] [INSPIRE].

  3. C.F. Berger and D. Forde, Multi-parton scattering amplitudes via on-shell methods, Ann. Rev. Nucl. Part. Sci. 60 (2010) 181 [arXiv:0912.3534].

    Article  ADS  Google Scholar 

  4. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

  5. J.A.M. Vermaseren, A. Vogt and S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys. B 724 (2005) 3 [hep-ph/0504242] [INSPIRE].

  6. A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

  7. S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

  8. S. Moch and J.A.M. Vermaseren, Deep inelastic structure functions at two loops, Nucl. Phys. B 573 (2000) 853 [hep-ph/9912355] [INSPIRE].

  9. A. Mitov, A new method for calculating differential distributions directly in Mellin space, Phys. Lett. B 643 (2006) 366 [hep-ph/0511340] [INSPIRE].

  10. A. Mitov and S.-O. Moch, QCD corrections to semi-inclusive hadron production in electron-positron annihilation at two loops, Nucl. Phys. B 751 (2006) 18 [hep-ph/0604160] [INSPIRE].

  11. S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren, The next next-to-leading QCD approximation for nonsinglet moments of deep inelastic structure functions, Nucl. Phys. B 427 (1994) 41 [INSPIRE].

    Article  ADS  Google Scholar 

  12. S.A. Larin, P. Nogueira, T. van Ritbergen and J.A.M. Vermaseren, The three loop QCD calculation of the moments of deep inelastic structure functions, Nucl. Phys. B 492 (1997) 338 [hep-ph/9605317] [INSPIRE].

  13. A. Retey and J.A.M. Vermaseren, Some higher moments of deep inelastic structure functions at next-to-next-to-leading order of perturbative QCD, Nucl. Phys. B 604 (2001) 281 [hep-ph/0007294] [INSPIRE].

  14. D.I. Kazakov and A.V. Kotikov, Total α − s correction to deep inelastic scattering cross-section ratio, R = σ − l/σ − t in QCD. Calculation of longitudinal structure function, Nucl. Phys. B 307 (1988) 721 [Erratum ibid. B 345 (1990) 299] [INSPIRE].

  15. I. Bierenbaum, J. Blumlein and S. Klein, Mellin moments of the O(α 3 s ) heavy flavor contributions to unpolarized deep-inelastic scattering at Q 2 ≫ m 2 and anomalous dimensions, Nucl. Phys. B 820 (2009) 417 [arXiv:0904.3563] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. J. Blumlein, S. Klein and B. Todtli, O(α 2 s ) and O(α 3 s ) heavy flavor contributions to transversity at Q 2 ≫ m 2, Phys. Rev. D 80 (2009) 094010 [arXiv:0909.1547] [INSPIRE].

    ADS  Google Scholar 

  17. A. Behring et al., The logarithmic contributions to the O(α 3 s ) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering, Eur. Phys. J. C 74 (2014) 3033 [arXiv:1403.6356] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Blumlein, A. Hasselhuhn, S. Klein and C. Schneider, The O(α 3 s n f T 2 F C A,F ) contributions to the gluonic massive operator matrix elements, Nucl. Phys. B 866 (2013) 196 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. J. Ablinger, J. Blumlein, S. Klein, C. Schneider and F. Wissbrock, The O(α 3 s ) massive operator matrix elements of O(n f ) for the structure function F 2(x, Q 2) and transversity, Nucl. Phys. B 844 (2011) 26 [arXiv:1008.3347] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. J. Ablinger et al., The O(α 3 s T 2 F ) contributions to the gluonic operator matrix element, Nucl. Phys. B 885 (2014) 280 [arXiv:1405.4259] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J. Ablinger et al., Massive 3-loop ladder diagrams for quarkonic local operator matrix elements, Nucl. Phys. B 864 (2012) 52 [arXiv:1206.2252] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. J. Ablinger et al., Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms, Nucl. Phys. B 885 (2014) 409 [arXiv:1403.1137] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J. Ablinger et al., Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra, Comput. Phys. Commun. 202 (2016) 33 [arXiv:1509.08324] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Anastasiou et al., Higgs boson gluon-fusion production beyond threshold in N 3 LO QCD, JHEP 03 (2015) 091 [arXiv:1411.3584] [INSPIRE].

    Article  Google Scholar 

  26. C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, arXiv:1602.00695 [INSPIRE].

  27. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Threshold resummation at N 3 LL accuracy and soft-virtual cross sections at N 3 LO, Nucl. Phys. B 888 (2014) 75 [arXiv:1405.4827] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. Bonvini, R.D. Ball, S. Forte, S. Marzani and G. Ridolfi, Updated Higgs cross section at approximate N 3 LO, J. Phys. G 41 (2014) 095002 [arXiv:1404.3204] [INSPIRE].

    Article  ADS  Google Scholar 

  29. T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan production at threshold to third order in QCD, Phys. Rev. Lett. 113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].

    Article  ADS  Google Scholar 

  30. Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, Soft-virtual corrections to Higgs production at N 3 LO, Phys. Rev. D 91 (2015) 036008 [arXiv:1412.2771] [INSPIRE].

    ADS  Google Scholar 

  31. J. Blumlein and V. Ravindran, Mellin moments of the next-to-next-to leading order coefficient functions for the Drell-Yan process and hadronic Higgs-boson production, Nucl. Phys. B 716 (2005) 128 [hep-ph/0501178] [INSPIRE].

  32. G.F. Sterman, An introduction to quantum field theory, Cambridge University Press, Cambridge U.K. (1993).

    Book  Google Scholar 

  33. E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

  34. R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M.J.G. Veltman, Diagrammatica: the path to Feynman rules, Cambridge Lect. Notes Phys. 4 (1994) 1.

    MathSciNet  Google Scholar 

  36. M.J.G. Veltman, Unitarity and causality in a renormalizable field theory with unstable particles, Physica 29 (1963) 186 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys. B 157 (1979) 461 [INSPIRE].

    Article  ADS  Google Scholar 

  38. O. Gituliar, Master integrals for splitting functions from differential equations in QCD, JHEP 02 (2016) 017 [arXiv:1512.02045] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J.A.M. Vermaseren and S. Moch, Mathematics for structure functions, Nucl. Phys. Proc. Suppl. 89 (2000) 131 [hep-ph/0004235] [INSPIRE].

  40. J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A 14 (1999) 2037 [hep-ph/9806280] [INSPIRE].

  41. R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP 11 (2013) 165 [arXiv:1308.6676] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

  43. J. Ablinger, A computer algebra toolbox for harmonic sums related to particle physics, Ph.D. thesis, Linz University, Linz, Austria (2009), arXiv:1011.1176 [INSPIRE].

  44. J. Ablinger, Computer algebra algorithms for special functions in particle physics,, Ph.D. thesis, Linz University, Linz, Austria (2012), arXiv:1305.0687 [INSPIRE].

  45. J. Ablinger, J. Blümlein and C. Schneider, Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. J. Ablinger, J. Blumlein and C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. J. Blumlein, Structural relations of harmonic sums and Mellin transforms up to weight w = 5, Comput. Phys. Commun. 180 (2009) 2218 [arXiv:0901.3106][INSPIRE].

  48. M. Höschele, J. Hoff, A. Pak, M. Steinhauser and T. Ueda, MT: a Mathematica package to compute convolutions, Comput. Phys. Commun. 185 (2014) 528 [arXiv:1307.6925] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].

  50. R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

  51. A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].

    Article  ADS  Google Scholar 

  53. J. Blumlein, Algebraic relations between harmonic sums and associated quantities, Comput. Phys. Commun. 159 (2004) 19 [hep-ph/0311046] [INSPIRE].

  54. J. Carter and G. Heinrich, SecDec: a general program for sector decomposition, Comput. Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. S. Borowka, J. Carter and G. Heinrich, Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0, Comput. Phys. Commun. 184 (2013) 396 [arXiv:1204.4152] [INSPIRE].

    Article  ADS  Google Scholar 

  56. S. Borowka et al., SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].

  57. D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

  58. D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 (2012) 846 [hep-ph/0703052] [INSPIRE].

  59. A. Pak, M. Rogal and M. Steinhauser, Production of scalar and pseudo-scalar Higgs bosons to next-to-next-to-leading order at hadron colliders, JHEP 09 (2011) 088 [arXiv:1107.3391] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Nikhef Theory Group, Science Park 105, NL-1098 XG, Amsterdam, The Netherlands

    Domenico Bonocore, Eric Laenen & Robbert Rietkerk

  2. Institute for Theoretical Physics Amsterdam, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands

    Eric Laenen & Robbert Rietkerk

  3. Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, Utrecht, The Netherlands

    Eric Laenen

Authors
  1. Domenico Bonocore
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Eric Laenen
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Robbert Rietkerk
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Robbert Rietkerk.

Additional information

ArXiv ePrint: 1603.05252

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonocore, D., Laenen, E. & Rietkerk, R. Unitarity methods for Mellin moments of Drell-Yan cross sections. J. High Energ. Phys. 2016, 79 (2016). https://doi.org/10.1007/JHEP05(2016)079

Download citation

  • Received: 30 March 2016

  • Revised: 05 May 2016

  • Accepted: 05 May 2016

  • Published: 13 May 2016

  • DOI: https://doi.org/10.1007/JHEP05(2016)079

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature