Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
High precision determination of the gluon fusion Higgs boson cross-section at the LHC
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The gluon-fusion production of Higgs boson pair: N3LO QCD corrections and top-quark mass effects

12 March 2020

Long-Bin Chen, Hai Tao Li, … Jian Wang

Leading-logarithmic threshold resummation of Higgs production in gluon fusion at next-to-leading power

16 January 2020

Martin Beneke, Mathias Garny, … Jian Wang

Soft gluon resummation for Higgs boson pair production including finite Mt effects

24 August 2018

Daniel de Florian & Javier Mazzitelli

Higgs boson production at the LHC using the qT subtraction formalism at N3LO QCD

14 February 2019

Leandro Cieri, Xuan Chen, … Alexander Huss

Higgs boson pair production at NNLO with top quark mass effects

09 May 2018

M. Grazzini, G. Heinrich, … J. Mazzitelli

Inclusive production cross sections at N3LO

13 December 2022

Julien Baglio, Claude Duhr, … Robert Szafron

Four-lepton production in gluon fusion at NLO matched to parton showers

03 August 2021

Simone Alioli, Silvia Ferrario Ravasio, … Raoul Röntsch

ZZ production at the LHC: NLO QCD corrections to the loop-induced gluon fusion channel

13 March 2019

Massimiliano Grazzini, Stefan Kallweit, … Jeong Yeon Yook

Probing the scalar potential via double Higgs boson production at hadron colliders

02 April 2019

Sophia Borowka, Claude Duhr, … Xiaoran Zhao

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 10 May 2016

High precision determination of the gluon fusion Higgs boson cross-section at the LHC

  • Charalampos Anastasiou1,
  • Claude Duhr2,3,
  • Falko Dulat1,
  • Elisabetta Furlan1,
  • Thomas Gehrmann4,
  • Franz Herzog5,
  • Achilleas Lazopoulos1 &
  • …
  • Bernhard Mistlberger2 

Journal of High Energy Physics volume 2016, Article number: 58 (2016) Cite this article

  • 558 Accesses

  • 220 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We present the most precise value for the Higgs boson cross-section in the gluon-fusion production mode at the LHC. Our result is based on a perturbative expansion through N3LO in QCD, in an effective theory where the top-quark is assumed to be infinitely heavy, while all other Standard Model quarks are massless. We combine this result with QCD corrections to the cross-section where all finite quark-mass effects are included exactly through NLO. In addition, electroweak corrections and the first corrections in the inverse mass of the top-quark are incorporated at three loops. We also investigate the effects of threshold resummation, both in the traditional QCD framework and following a SCET approach, which resums a class of π2 contributions to all orders. We assess the uncertainty of the cross-section from missing higher-order corrections due to both perturbative QCD effects beyond N3LO and unknown mixed QCD-electroweak effects. In addition, we determine the sensitivity of the cross-section to the choice of parton distribution function (PDF) sets and to the parametric uncertainty in the strong coupling constant and quark masses. For a Higgs mass of m H = 125 GeV and an LHC center-of-mass energy of 13 TeV, our best prediction for the gluon fusion cross-section is

$$ \sigma =48.58\;{\mathrm{pb}}_{-3.27\;\mathrm{p}\mathrm{b}}^{+2.22\;\mathrm{p}\mathrm{b}}\left(\mathrm{theory}\right)\pm 1.56\;\mathrm{p}\mathrm{b}\left(3.20\%\right)\left(\mathrm{P}\mathrm{D}\mathrm{F}+{\alpha}_s\right). $$

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  5. D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].

    Article  ADS  Google Scholar 

  9. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic Results for Virtual QCD Corrections to Higgs Production and Decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Bonciani, G. Degrassi and A. Vicini, Scalar particle contribution to Higgs production via gluon fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: A NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP 10 (2009) 068 [arXiv:0907.2362] [INSPIRE].

    Article  ADS  Google Scholar 

  13. F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].

    Article  ADS  Google Scholar 

  14. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs Boson Interactions with Nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].

    Article  ADS  Google Scholar 

  15. T. Inami, T. Kubota and Y. Okada, Effective Gauge Theory and the Effect of Heavy Quarks in Higgs Boson Decays, Z. Phys. C 18 (1983) 69 [INSPIRE].

    ADS  Google Scholar 

  16. V.P. Spiridonov and K.G. Chetyrkin, Nonleading mass corrections and renormalization of the operators m psi-bar psi and g**2(mu nu), Sov. J. Nucl. Phys. 47 (1988) 522 [INSPIRE].

    Google Scholar 

  17. K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α 3 S ) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].

    ADS  Google Scholar 

  18. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. K.G. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    Article  ADS  Google Scholar 

  26. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].

    Article  ADS  Google Scholar 

  27. G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.C. Collins, D.E. Soper and G.F. Sterman, Soft Gluons and Factorization, Nucl. Phys. B 308 (1988) 833 [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The resummation of soft gluons in hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Moch, J.A.M. Vermaseren and A. Vogt, Higher-order corrections in threshold resummation, Nucl. Phys. B 726 (2005) 317 [hep-ph/0506288] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Threshold resummation at N 3 LL accuracy and soft-virtual cross sections at N 3 LO, Nucl. Phys. B 888 (2014) 75 [arXiv:1405.4827] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Google Scholar 

  33. M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Idilbi, X.-d. Ji and F. Yuan, Resummation of threshold logarithms in effective field theory for DIS, Drell-Yan and Higgs production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068] [INSPIRE].

    Article  ADS  Google Scholar 

  36. T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, arXiv:1410.1892 [INSPIRE].

  37. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Bonvini and S. Marzani, Resummed Higgs cross section at N 3 LL, JHEP 09 (2014) 007 [arXiv:1405.3654] [INSPIRE].

    Article  ADS  Google Scholar 

  39. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  40. T. Schmidt and M. Spira, Higgs Boson Production via Gluon Fusion: Soft-Gluon Resummation including Mass Effects, Phys. Rev. D 93 (2016) 014022 [arXiv:1509.00195] [INSPIRE].

    ADS  Google Scholar 

  41. G. Sterman and M. Zeng, Quantifying Comparisons of Threshold Resummations, JHEP 05 (2014) 132 [arXiv:1312.5397] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Bonvini, S. Forte, G. Ridolfi and L. Rottoli, Resummation prescriptions and ambiguities in SCET vs. direct QCD: Higgs production as a case study, JHEP 01 (2015) 046 [arXiv:1409.0864] [INSPIRE].

    Article  ADS  Google Scholar 

  43. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO Computational Techniques: The Cases H → γγ and H → gg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].

    Article  ADS  Google Scholar 

  48. R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: Virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].

    Article  ADS  Google Scholar 

  50. LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  51. S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 2. Differential Distributions, arXiv:1201.3084 [INSPIRE].

  52. LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].

  53. F. Hautmann, Heavy top limit and double logarithmic contributions to Higgs production at m 2 H /s much less than 1, Phys. Lett. B 535 (2002) 159 [hep-ph/0203140] [INSPIRE].

    Article  ADS  Google Scholar 

  54. R.D. Ball, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Higgs production in gluon fusion beyond NNLO, Nucl. Phys. B 874 (2013) 746 [arXiv:1303.3590] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. M. Bonvini, R.D. Ball, S. Forte, S. Marzani and G. Ridolfi, Updated Higgs cross section at approximate N 3 LO, J. Phys. G 41 (2014) 095002 [arXiv:1404.3204] [INSPIRE].

    Article  ADS  Google Scholar 

  56. D. de Florian, J. Mazzitelli, S. Moch and A. Vogt, Approximate N 3 LO Higgs-boson production cross section using physical-kernel constraints, JHEP 10 (2014) 176 [arXiv:1408.6277] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].

    Article  ADS  Google Scholar 

  58. C. Anastasiou, S. Buehler, C. Duhr and F. Herzog, NNLO phase space master integrals for two-to-one inclusive cross sections in dimensional regularization, JHEP 11 (2012) 062 [arXiv:1208.3130] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Höschele, J. Hoff, A. Pak, M. Steinhauser and T. Ueda, Higgs boson production at the LHC: NNLO partonic cross sections through order ϵ and convolutions with splitting functions to N 3 LO, Phys. Lett. B 721 (2013) 244 [arXiv:1211.6559] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  60. S. Buehler and A. Lazopoulos, Scale dependence and collinear subtraction terms for Higgs production in gluon fusion at N3LO, JHEP 10 (2013) 096 [arXiv:1306.2223] [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].

    Article  ADS  Google Scholar 

  64. T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. C. Duhr, T. Gehrmann and M. Jaquier, Two-loop splitting amplitudes and the single-real contribution to inclusive Higgs production at N 3 LO, JHEP 02 (2015) 077 [arXiv:1411.3587] [INSPIRE].

    Article  ADS  Google Scholar 

  67. F. Dulat and B. Mistlberger, Real-Virtual-Virtual contributions to the inclusive Higgs cross section at N3LO, arXiv:1411.3586 [INSPIRE].

  68. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Real-virtual contributions to the inclusive Higgs cross-section at N 3 LO, JHEP 12 (2013) 088 [arXiv:1311.1425] [INSPIRE].

    Article  ADS  Google Scholar 

  69. W.B. Kilgore, One-loop single-real-emission contributions to pp → H + X at next-to-next-to-next-to-leading order, Phys. Rev. D 89 (2014) 073008 [arXiv:1312.1296] [INSPIRE].

    ADS  Google Scholar 

  70. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].

    ADS  Google Scholar 

  71. C. Anastasiou, L.J. Dixon and K. Melnikov, NLO Higgs boson rapidity distributions at hadron colliders, Nucl. Phys. Proc. Suppl. 116 (2003) 193 [hep-ph/0211141] [INSPIRE].

    Article  ADS  Google Scholar 

  72. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].

    Article  ADS  Google Scholar 

  73. F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  75. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  76. E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].

    ADS  Google Scholar 

  77. T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    Article  ADS  Google Scholar 

  79. C. Anzai et al., Exact N 3 LO results for qq′ → H + X, JHEP 07 (2015) 140 [arXiv:1506.02674] [INSPIRE].

    Article  ADS  Google Scholar 

  80. C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].

    Article  ADS  Google Scholar 

  81. C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  82. Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080 [arXiv:1309.4391] [INSPIRE].

    Article  ADS  Google Scholar 

  83. C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3 LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].

    Article  ADS  Google Scholar 

  84. Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, N 3 LO Higgs boson and Drell-Yan production at threshold: The one-loop two-emission contribution, Phys. Rev. D 90 (2014) 053006 [arXiv:1404.5839] [INSPIRE].

    ADS  Google Scholar 

  85. Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, Soft-virtual corrections to Higgs production at N 3 LO, Phys. Rev. D 91 (2015) 036008 [arXiv:1412.2771] [INSPIRE].

    ADS  Google Scholar 

  86. C. Anastasiou et al., Higgs boson gluon-fusion production beyond threshold in N 3 LO QCD, JHEP 03 (2015) 091 [arXiv:1411.3584] [INSPIRE].

    Article  Google Scholar 

  87. C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, F. Herzog and B. Mistlberger, Soft expansion of double-real-virtual corrections to Higgs production at N 3 LO, JHEP 08 (2015) 051 [arXiv:1505.04110] [INSPIRE].

    Article  ADS  Google Scholar 

  88. M. Beneke and V.M. Braun, Power corrections and renormalons in Drell-Yan production, Nucl. Phys. B 454 (1995) 253 [hep-ph/9506452] [INSPIRE].

    Article  ADS  Google Scholar 

  89. R. Akhoury, M.G. Sotiropoulos and V.I. Zakharov, The KLN theorem and soft radiation in gauge theories: Abelian case, Phys. Rev. D 56 (1997) 377 [hep-ph/9702270] [INSPIRE].

    ADS  Google Scholar 

  90. A. Denner et al., Standard Model input parameters for Higgs physics, LHCHXSWG-INT-2015-006.

  91. S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].

    Article  ADS  Google Scholar 

  92. E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [INSPIRE].

    Article  ADS  Google Scholar 

  93. F. Herzog and B. Mistlberger, The Soft-Virtual Higgs Cross-section at N3LO and the Convergence of the Threshold Expansion, arXiv:1405.5685 [INSPIRE].

  94. F. Dulat and B. Mistlberger, Real-Virtual-Virtual contributions to the inclusive Higgs cross section at N3LO, arXiv:1411.3586 [INSPIRE].

  95. S. Forte, A. Isgrò and G. Vita, Do we need N 3 LO Parton Distributions?, Phys. Lett. B 731 (2014) 136 [arXiv:1312.6688] [INSPIRE].

    Article  ADS  Google Scholar 

  96. J.A.M. Vermaseren, A. Vogt and S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys. B 724 (2005) 3 [hep-ph/0504242] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. G. Soar, S. Moch, J.A.M. Vermaseren and A. Vogt, On Higgs-exchange DIS, physical evolution kernels and fourth-order splitting functions at large x, Nucl. Phys. B 832 (2010) 152 [arXiv:0912.0369] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  98. V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].

    Article  ADS  Google Scholar 

  99. T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan Production at Threshold to Third Order in QCD, Phys. Rev. Lett. 113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].

    Article  ADS  Google Scholar 

  100. S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard Processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  101. S. Catani and L. Trentadue, Comment on QCD exponentiation at large x, Nucl. Phys. B 353 (1991) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  102. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  103. T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].

    Article  ADS  Google Scholar 

  104. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  105. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].

    ADS  Google Scholar 

  106. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Updated Predictions for Higgs Production at the Tevatron and the LHC, Phys. Lett. B 698 (2011) 271 [arXiv:1008.3162] [INSPIRE].

    Article  ADS  Google Scholar 

  107. M. Bonvini and L. Rottoli, Three loop soft function for N 3 LL′ gluon fusion Higgs production in soft-collinear effective theory, Phys. Rev. D 91 (2015) 051301 [arXiv:1412.3791] [INSPIRE].

    ADS  Google Scholar 

  108. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    Article  ADS  Google Scholar 

  109. G.P. Korchemsky and A.V. Radyushkin, Loop Space Formalism and Renormalization Group for the Infrared Asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].

    Article  ADS  Google Scholar 

  110. S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].

    Article  ADS  Google Scholar 

  111. R. Mueller and D.G. Oeztuerk, On the computation of finite bottom-quark mass effects in Higgs boson production, arXiv:1512.08570 [INSPIRE].

  112. P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop relation between the MS and on-shell quark mass, arXiv:1601.03748 [INSPIRE].

  113. P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark Mass Relations to Four-Loop Order in Perturbative QCD, Phys. Rev. Lett. 114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].

    Article  ADS  Google Scholar 

  114. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    Article  ADS  Google Scholar 

  115. J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].

    Article  ADS  Google Scholar 

  116. S. Alekhin, J. Blumlein and S. Moch, The ABM parton distributions tuned to LHC data, Phys. Rev. D 89 (2014) 054028 [arXiv:1310.3059] [INSPIRE].

    ADS  Google Scholar 

  117. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

    ADS  Google Scholar 

  118. P. Jimenez-Delgado and E. Reya, Delineating parton distributions and the strong coupling, Phys. Rev. D 89 (2014) 074049 [arXiv:1403.1852] [INSPIRE].

    ADS  Google Scholar 

  119. L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

    Article  ADS  Google Scholar 

  120. NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  121. ZEUS, H1 collaborations, H. Abramowicz et al., Combination of measurements of inclusive deep inelastic e ± p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE].

  122. J.F. Owens, A. Accardi and W. Melnitchouk, Global parton distributions with nuclear and finite-Q 2 corrections, Phys. Rev. D 87 (2013) 094012 [arXiv:1212.1702] [INSPIRE].

    ADS  Google Scholar 

  123. Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  124. H.-L. Lai et al., Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions, Phys. Rev. D 82 (2010) 054021 [arXiv:1004.4624] [INSPIRE].

    ADS  Google Scholar 

  125. C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  126. C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Inclusive Higgs boson cross-section for the LHC at 8 TeV, JHEP 04 (2012) 004 [arXiv:1202.3638] [INSPIRE].

    Article  ADS  Google Scholar 

  127. J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].

    Article  ADS  Google Scholar 

  128. J. Baglio and A. Djouadi, Predictions for Higgs production at the Tevatron and the associated uncertainties, JHEP 10 (2010) 064 [arXiv:1003.4266] [INSPIRE].

    Article  ADS  Google Scholar 

  129. A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun. 170 (2005) 65 [hep-ph/0408244] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, ETH Zürich, 8093, Zürich, Switzerland

    Charalampos Anastasiou, Falko Dulat, Elisabetta Furlan & Achilleas Lazopoulos

  2. Theoretical Physics Department, CERN, Geneva, Switzerland

    Claude Duhr & Bernhard Mistlberger

  3. Center for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, Chemin du Cyclotron 2, 1348, Louvain-La-Neuve, Belgium

    Claude Duhr

  4. Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland

    Thomas Gehrmann

  5. Nikhef, Science Park 105, NL-1098 XG, Amsterdam, The Netherlands

    Franz Herzog

Authors
  1. Charalampos Anastasiou
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Claude Duhr
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Falko Dulat
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Elisabetta Furlan
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Thomas Gehrmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Franz Herzog
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Achilleas Lazopoulos
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Bernhard Mistlberger
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Claude Duhr.

Additional information

ArXiv ePrint: 1602.00695

On leave from the ‘Fonds National de la Recherche Scientifique’ (FNRS), Belgium. (Claude Duhr)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anastasiou, C., Duhr, C., Dulat, F. et al. High precision determination of the gluon fusion Higgs boson cross-section at the LHC. J. High Energ. Phys. 2016, 58 (2016). https://doi.org/10.1007/JHEP05(2016)058

Download citation

  • Received: 01 March 2016

  • Accepted: 20 April 2016

  • Published: 10 May 2016

  • DOI: https://doi.org/10.1007/JHEP05(2016)058

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Physics
  • Perturbative QCD
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.