Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

UV (in)sensitivity of Higgs inflation

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 10 May 2016
  • Volume 2016, article number 49, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
UV (in)sensitivity of Higgs inflation
Download PDF
  • Jacopo Fumagalli1 &
  • Marieke Postma1 
  • 364 Accesses

  • 51 Citations

  • 9 Altmetric

  • 1 Mention

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The predictions of Standard Model Higgs inflation are in excellent agreement with the Planck data, without the need for new fields. However, consistency of the theory requires the presence of (unknown) threshold corrections. These modify the running of the couplings, and thereby change the shape of the inflationary potential. This raises the question how sensitive the CMB parameters are to the UV completion. We show that, due to a precise cancellation, the inflationary predictions are almost unaffected. This implies in general that one cannot relate the spectral index and tensor-to-scalar ratio to the precise top and Higgs mass measurements at the LHC, nor can one probe effects of UV physics on the running.

Article PDF

Download to read the full article text

Similar content being viewed by others

Unitarity and predictiveness in new Higgs inflation

Article Open access 07 March 2018

Field redefinitions, perturbative unitarity and Higgs inflation

Article Open access 23 June 2022

Critical point Higgs inflation in the Palatini formulation

Article Open access 08 April 2021
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R. Fakir and W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev. D 41 (1990) 1783 [INSPIRE].

    ADS  Google Scholar 

  2. D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing Density Fluctuation Spectra in Inflation, Phys. Rev. D 40 (1989) 1753 [INSPIRE].

    ADS  Google Scholar 

  3. F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

    Article  ADS  Google Scholar 

  4. F. Bezrukov, The Higgs field as an inflaton, Class. Quant. Grav. 30 (2013) 214001 [arXiv:1307.0708] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].

  6. F. Bezrukov, M. Yu. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  7. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  8. V. Branchina and E. Messina, Stability, Higgs Boson Mass and New Physics, Phys. Rev. Lett. 111 (2013) 241801 [arXiv:1307.5193] [INSPIRE].

    Article  ADS  Google Scholar 

  9. V. Branchina and E. Messina, Stability and UV completion of the Standard Model, arXiv:1507.08812 [INSPIRE].

  10. A. Kobakhidze and A. Spencer-Smith, The Higgs vacuum is unstable, arXiv:1404.4709 [INSPIRE].

  11. A. Spencer-Smith, Higgs Vacuum Stability in a Mass-Dependent Renormalisation Scheme, arXiv:1405.1975 [INSPIRE].

  12. A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner and O.L. Veretin, Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision, Phys. Rev. Lett. 115 (2015) 201802 [arXiv:1507.08833] [INSPIRE].

    Article  ADS  Google Scholar 

  13. O. Lebedev, On Stability of the Electroweak Vacuum and the Higgs Portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  15. L. Basso, O. Fischer and J.J. van Der Bij, A renormalization group analysis of the Hill model and its HEIDI extension, Phys. Lett. B 730 (2014) 326 [arXiv:1309.6086] [INSPIRE].

    Article  ADS  Google Scholar 

  16. C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].

    ADS  Google Scholar 

  18. C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. M.P. Hertzberg, On Inflation with Non-minimal Coupling, JHEP 11 (2010) 023 [arXiv:1002.2995] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Superconformal Symmetry, NMSSM and Inflation, Phys. Rev. D 83 (2011) 025008 [arXiv:1008.2942] [INSPIRE].

    ADS  Google Scholar 

  22. C.P. Burgess, S.P. Patil and M. Trott, On the Predictiveness of Single-Field Inflationary Models, JHEP 06 (2014) 010 [arXiv:1402.1476] [INSPIRE].

    Article  ADS  Google Scholar 

  23. Z.-Z. Xianyu, J. Ren and H.-J. He, Gravitational Interaction of Higgs Boson and Weak Boson Scattering, Phys. Rev. D 88 (2013) 096013 [arXiv:1305.0251] [INSPIRE].

    ADS  Google Scholar 

  24. G.F. Giudice and H.M. Lee, Unitarizing Higgs Inflation, Phys. Lett. B 694 (2011) 294 [arXiv:1010.1417] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.L.F. Barbon, J.A. Casas, J. Elias-Miro and J.R. Espinosa, Higgs Inflation as a Mirage, JHEP 09 (2015) 027 [arXiv:1501.02231] [INSPIRE].

    Article  Google Scholar 

  26. U. Aydemir, M.M. Anber and J.F. Donoghue, Self-healing of unitarity in effective field theories and the onset of new physics, Phys. Rev. D 86 (2012) 014025 [arXiv:1203.5153] [INSPIRE].

    ADS  Google Scholar 

  27. X. Calmet and R. Casadio, Self-healing of unitarity in Higgs inflation, Phys. Lett. B 734 (2014) 17 [arXiv:1310.7410] [INSPIRE].

    Article  ADS  Google Scholar 

  28. I.G. Moss, Covariant one-loop quantum gravity and Higgs inflation, arXiv:1409.2108 [INSPIRE].

  29. J. Ren, Z.-Z. Xianyu and H.-J. He, Higgs Gravitational Interaction, Weak Boson Scattering and Higgs Inflation in Jordan and Einstein Frames, JCAP 06 (2014) 032 [arXiv:1404.4627] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. D.P. George, S. Mooij and M. Postma, Quantum corrections in Higgs inflation: the Standard Model case, JCAP 04 (2016) 006 [arXiv:1508.04660] [INSPIRE].

    Article  ADS  Google Scholar 

  31. F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

    Article  ADS  Google Scholar 

  32. F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. De Simone, M.P. Hertzberg and F. Wilczek, Running Inflation in the Standard Model, Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A.O. Barvinsky, A. Yu. Kamenshchik and A.A. Starobinsky, Inflation scenario via the Standard Model Higgs boson and LHC, JCAP 11 (2008) 021 [arXiv:0809.2104] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A.O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, A.A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 12 (2009) 003 [arXiv:0904.1698] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A.O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, A.A. Starobinsky and C.F. Steinwachs, Higgs boson, renormalization group and naturalness in cosmology, Eur. Phys. J. C 72 (2012) 2219 [arXiv:0910.1041] [INSPIRE].

    Article  ADS  Google Scholar 

  37. K. Allison, Higgs xi-inflation for the 125-126 GeV Higgs: a two-loop analysis, JHEP 02 (2014) 040 [arXiv:1306.6931] [INSPIRE].

    Article  ADS  Google Scholar 

  38. D.P. George, S. Mooij and M. Postma, Quantum corrections in Higgs inflation: the real scalar case, JCAP 02 (2014) 024 [arXiv:1310.2157] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. D.P. George, S. Mooij and M. Postma, Effective action for the Abelian Higgs model in FLRW, JCAP 11 (2012) 043 [arXiv:1207.6963] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M.P. Hertzberg, Can Inflation be Connected to Low Energy Particle Physics?, JCAP 08 (2012) 008 [arXiv:1110.5650] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Postma and M. Volponi, Equivalence of the Einstein and Jordan frames, Phys. Rev. D 90 (2014) 103516 [arXiv:1407.6874] [INSPIRE].

    ADS  Google Scholar 

  42. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. F. Bezrukov, J. Rubio and M. Shaposhnikov, Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev. D 92 (2015) 083512 [arXiv:1412.3811] [INSPIRE].

    ADS  Google Scholar 

  44. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  45. M.P. Hertzberg, Inflation, Symmetry and B-Modes, Phys. Lett. B 745 (2015) 118 [arXiv:1403.5253] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. I. Quiros, R. Garcia-Salcedo, J.E.M. Aguilar and T. Matos, The conformal transformation’s controversy: what are we missing?, Gen. Rel. Grav. 45 (2013) 489 [arXiv:1108.5857] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. I. Quiros, R. Garcia-Salcedo and J.E.M. Aguilar, Conformal transformations and the conformal equivalence principle, arXiv:1108.2911 [INSPIRE].

  48. R. Catena, M. Pietroni and L. Scarabello, Einstein and Jordan reconciled: a frame-invariant approach to scalar-tensor cosmology, Phys. Rev. D 76 (2007) 084039 [astro-ph/0604492] [INSPIRE].

  49. J.-O. Gong, J.-c. Hwang, W.-I. Park, M. Sasaki and Y.-S. Song, Conformal invariance of curvature perturbation, JCAP 09 (2011) 023 [arXiv:1107.1840] [INSPIRE].

    Article  ADS  Google Scholar 

  50. T. Chiba and M. Yamaguchi, Extended Slow-Roll Conditions and Rapid-Roll Conditions, JCAP 10 (2008) 021 [arXiv:0807.4965] [INSPIRE].

    Article  ADS  Google Scholar 

  51. T. Kubota, N. Misumi, W. Naylor and N. Okuda, The Conformal Transformation in General Single Field Inflation with Non-Minimal Coupling, JCAP 02 (2012) 034 [arXiv:1112.5233] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J. Weenink and T. Prokopec, Gauge invariant cosmological perturbations for the nonminimally coupled inflaton field, Phys. Rev. D 82 (2010) 123510 [arXiv:1007.2133] [INSPIRE].

    ADS  Google Scholar 

  53. T. Prokopec and J. Weenink, Frame independent cosmological perturbations, JCAP 09 (2013) 027 [arXiv:1304.6737] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. A. Yu. Kamenshchik and C.F. Steinwachs, Question of quantum equivalence between Jordan frame and Einstein frame, Phys. Rev. D 91 (2015) 084033 [arXiv:1408.5769] [INSPIRE].

    ADS  Google Scholar 

  55. L. Senatore and M. Zaldarriaga, On Loops in Inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. F. Bezrukov and M. Shaposhnikov, Higgs inflation at the critical point, Phys. Lett. B 734 (2014) 249 [arXiv:1403.6078] [INSPIRE].

    Article  ADS  Google Scholar 

  58. Y. Hamada, H. Kawai, K.-y. Oda and S.C. Park, Higgs Inflation is Still Alive after the Results from BICEP2, Phys. Rev. Lett. 112 (2014) 241301 [arXiv:1403.5043] [INSPIRE].

    Article  ADS  Google Scholar 

  59. ATLAS collaboration, Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012006 [arXiv:1408.5191] [INSPIRE].

  60. J. García-Bellido, D.G. Figueroa and J. Rubio, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624] [INSPIRE].

  61. C.G. Callan Jr., Broken scale invariance in scalar field theory, Phys. Rev. D 2 (1970) 1541 [INSPIRE].

    ADS  Google Scholar 

  62. K. Symanzik, Small distance behavior in field theory and power counting, Commun. Math. Phys. 18 (1970) 227 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The Effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].

  64. C.M. Fraser, Calculation of Higher Derivative Terms in the One Loop Effective Lagrangian, Z. Phys. C 28 (1985) 101 [INSPIRE].

    ADS  Google Scholar 

  65. J. Iliopoulos, C. Itzykson and A. Martin, Functional Methods and Perturbation Theory, Rev. Mod. Phys. 47 (1975) 165 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. S. Mooij and M. Postma, Goldstone bosons and a dynamical Higgs field, JCAP 09 (2011) 006 [arXiv:1104.4897] [INSPIRE].

    Article  ADS  Google Scholar 

  67. J.R. Espinosa et al., The cosmological Higgstory of the vacuum instability, JHEP 09 (2015) 174 [arXiv:1505.04825] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Jacopo Fumagalli & Marieke Postma

Authors
  1. Jacopo Fumagalli
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Marieke Postma
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jacopo Fumagalli.

Additional information

ArXiv ePrint: 1602.07234

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fumagalli, J., Postma, M. UV (in)sensitivity of Higgs inflation. J. High Energ. Phys. 2016, 49 (2016). https://doi.org/10.1007/JHEP05(2016)049

Download citation

  • Received: 14 March 2016

  • Accepted: 01 May 2016

  • Published: 10 May 2016

  • DOI: https://doi.org/10.1007/JHEP05(2016)049

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Higgs Physics
  • Renormalization Group
  • Effective field theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature