Advertisement

Potential NRQCD for unequal masses and the B c spectrum at N3LO

  • Clara Peset
  • Antonio Pineda
  • Maximilian StahlhofenEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We determine the 1/m and 1/m 2 spin-independent heavy quarkonium potentials in the unequal mass case with \( \mathcal{O} \)(α 3) and \( \mathcal{O} \)(α 2) accuracy, respectively. We discuss in detail different methods to calculate the potentials, and show the equivalence among them. In particular we obtain, for the first time, the manifestly gauge invariant 1/m and 1/m 2 potentials in terms of Wilson loops with next-to-leading order (NLO) precision. As an application of our results we derive the theoretical expression for the B c spectrum in the weak-coupling limit through next-to-next-to-next-to-leading order (N3LO).

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].
  2. [2]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: An Effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].
  3. [3]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].
  4. [4]
    A. Pineda, Review of Heavy Quarkonium at weak coupling, Prog. Part. Nucl. Phys. 67 (2012) 735 [arXiv:1111.0165] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    W.E. Caswell and G.P. Lepage, Effective Lagrangians for Bound State Problems in QED, QCD and Other Field Theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
  7. [7]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, The QCD potential at \( \mathcal{O} \)(1/m), Phys. Rev. D 63 (2001) 014023 [hep-ph/0002250] [INSPIRE].
  8. [8]
    A. Pineda and A. Vairo, The QCD potential at \( \mathcal{O} \)(1/m 2) : Complete spin dependent and spin independent result, Phys. Rev. D 63 (2001) 054007 [Erratum ibid. D 64 (2001) 039902] [hep-ph/0009145] [INSPIRE].
  9. [9]
    K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  10. [10]
    B.A. Kniehl, A.A. Penin, V.A. Smirnov and M. Steinhauser, Potential NRQCD and heavy quarkonium spectrum at next-to-next-to-next-to-leading order, Nucl. Phys. B 635 (2002) 357 [hep-ph/0203166] [INSPIRE].
  11. [11]
    S.N. Gupta and S.F. Radford, Quark-quark and quark-antiquark potentials, Phys. Rev. D 24 (1981) 2309 [INSPIRE].ADSGoogle Scholar
  12. [12]
    J.T. Pantaleone, S.H.H. Tye and Y.J. Ng, Spin Splittings in Heavy Quarkonia, Phys. Rev. D 33 (1986) 777 [INSPIRE].ADSGoogle Scholar
  13. [13]
    S. Titard and F.J. Yndurain, Rigorous QCD evaluation of spectrum and ground state properties of heavy \( q\overline{q} \) systems: With a precision determination of m b , M (η b), Phys. Rev. D 49 (1994) 6007 [hep-ph/9310236] [INSPIRE].
  14. [14]
    A.V. Manohar and I.W. Stewart, The QCD heavy quark potential to order v 2 : One loop matching conditions, Phys. Rev. D 62 (2000) 074015 [hep-ph/0003032] [INSPIRE].
  15. [15]
    B.A. Kniehl, A.A. Penin, M. Steinhauser and V.A. Smirnov, Non-Abelian α s3/(m q r 2) heavy quark-antiquark potential, Phys. Rev. D 65 (2002) 091503 [hep-ph/0106135] [INSPIRE].
  16. [16]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  17. [17]
    A. Pineda and J. Soto, The Lamb shift in dimensional regularization, Phys. Lett. B 420 (1998) 391 [hep-ph/9711292] [INSPIRE].
  18. [18]
    A. Pineda and J. Soto, Potential NRQED: The Positronium case, Phys. Rev. D 59 (1999) 016005 [hep-ph/9805424] [INSPIRE].
  19. [19]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, The Heavy quarkonium spectrum at order mα s5 lnα s, Phys. Lett. B 470 (1999) 215 [hep-ph/9910238] [INSPIRE].
  20. [20]
    W. Fischler, Quark-antiquark potential in QCD, Nucl. Phys. B 129 (1977) 157 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    Y. Schröder, The Static potential in QCD to two loops, Phys. Lett. B 447 (1999) 321 [hep-ph/9812205] [INSPIRE].
  22. [22]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, The Infrared behavior of the static potential in perturbative QCD, Phys. Rev. D 60 (1999) 091502 [hep-ph/9903355] [INSPIRE].
  23. [23]
    C. Anzai, Y. Kiyo and Y. Sumino, Static QCD potential at three-loop order, Phys. Rev. Lett. 104 (2010) 112003 [arXiv:0911.4335] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  24. [24]
    A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Three-loop static potential, Phys. Rev. Lett. 104 (2010) 112002 [arXiv:0911.4742] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    A.V. Manohar, The HQET/NRQCD Lagrangian to order α s /m 3, Phys. Rev. D 56 (1997) 230 [hep-ph/9701294] [INSPIRE].
  26. [26]
    C.W. Bauer and A.V. Manohar, Renormalization group scaling of the 1/m 2 HQET Lagrangian, Phys. Rev. D 57 (1998) 337 [hep-ph/9708306] [INSPIRE].
  27. [27]
    M. Beneke, Y. Kiyo and K. Schuller, Third-order correction to top-quark pair production near threshold I. Effective theory set-up and matching coefficients, arXiv:1312.4791 [INSPIRE].
  28. [28]
    Y. Schroder, The Static potential in QCD, DESY-THESIS-1999-021 (1999).Google Scholar
  29. [29]
    C. Peset, The Static potential in QCD, Ph.D. Thesis, in preparation.Google Scholar
  30. [30]
    M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].
  31. [31]
    E. Eichten and F. Feinberg, Spin Dependent Forces in QCD, Phys. Rev. D 23 (1981) 2724 [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Barchielli, E. Montaldi and G.M. Prosperi, On a systematic derivation of the quark-antiquark potential, Nucl. Phys. B 296 (1988) 625 [Erratum ibid. B 303 (1988) 752] [INSPIRE].
  33. [33]
    A. Barchielli, N. Brambilla and G.M. Prosperi, Relativistic corrections to the quark-antiquark potential and the quarkonium spectrum, Nuovo Cim. A 103 (1990) 59 [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    Y.-Q. Chen, Y.-P. Kuang and R.J. Oakes, On the spin dependent potential between heavy quark and antiquark, Phys. Rev. D 52 (1995) 264 [hep-ph/9406287] [INSPIRE].
  35. [35]
    M. Beneke, A. Signer and V.A. Smirnov, Top quark production near threshold and the top quark mass, Phys. Lett. B 454 (1999) 137 [hep-ph/9903260] [INSPIRE].
  36. [36]
    M. Beneke et al., Leptonic decay of the Υ(1S) meson at third order in QCD, Phys. Rev. Lett. 112 (2014) 151801 [arXiv:1401.3005] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    B.A. Kniehl and A.A. Penin, Ultrasoft effects in heavy quarkonium physics, Nucl. Phys. B 563 (1999) 200 [hep-ph/9907489] [INSPIRE].
  38. [38]
    N. Brambilla, D. Eiras, A. Pineda, J. Soto and A. Vairo, Inclusive decays of heavy quarkonium to light particles, Phys. Rev. D 67 (2003) 034018 [hep-ph/0208019] [INSPIRE].
  39. [39]
    A. Pineda and J. Soto, The Renormalization group improvement of the QCD static potentials, Phys. Lett. B 495 (2000) 323 [hep-ph/0007197] [INSPIRE].
  40. [40]
    A. Pineda, Renormalization group improvement of the NRQCD Lagrangian and heavy quarkonium spectrum, Phys. Rev. D 65 (2002) 074007 [hep-ph/0109117] [INSPIRE].
  41. [41]
    N. Brambilla, D. Gromes and A. Vairo, Poincaré invariance and the heavy quark potential, Phys. Rev. D 64 (2001) 076010 [hep-ph/0104068] [INSPIRE].
  42. [42]
    N. Brambilla, D. Gromes and A. Vairo, Poincaré invariance constraints on NRQCD and potential NRQCD, Phys. Lett. B 576 (2003) 314 [hep-ph/0306107] [INSPIRE].
  43. [43]
    W. Buchmüller, Y.J. Ng and S.H.H. Tye, Hyperfine Splittings in Heavy Quark Systems, Phys. Rev. D 24 (1981) 3003 [INSPIRE].ADSGoogle Scholar
  44. [44]
    Y. Kiyo and Y. Sumino, Full Formula for Heavy Quarkonium Energy Levels at Next-to-next-to-next-to-leading Order, Nucl. Phys. B 889 (2014) 156 [arXiv:1408.5590] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  45. [45]
    A.A. Penin and M. Steinhauser, Heavy quarkonium spectrum at \( \mathcal{O}\left({\alpha}_s^5{m}_q\right) \) and bottom/top quark mass determination, Phys. Lett. B 538 (2002) 335 [hep-ph/0204290] [INSPIRE].
  46. [46]
    A.A. Penin, V.A. Smirnov and M. Steinhauser, Heavy quarkonium spectrum and production/annihilation rates to order β 03 α s3, Nucl. Phys. B 716 (2005) 303 [hep-ph/0501042] [INSPIRE].
  47. [47]
    M. Beneke, Y. Kiyo and K. Schuller, Third-order Coulomb corrections to the S-wave Green function, energy levels and wave functions at the origin, Nucl. Phys. B 714 (2005) 67 [hep-ph/0501289] [INSPIRE].
  48. [48]
    N. Brambilla and A. Vairo, The B c mass up to order α s4, Phys. Rev. D 62 (2000) 094019 [hep-ph/0002075] [INSPIRE].
  49. [49]
    N. Brambilla, Y. Sumino and A. Vairo, Quarkonium spectroscopy and perturbative QCD: Massive quark loop effects, Phys. Rev. D 65 (2002) 034001 [hep-ph/0108084] [INSPIRE].
  50. [50]
    A. Pineda and F.J. Yndurain, Calculation of quarkonium spectrum and m b , m c to order α s4, Phys. Rev. D 58 (1998) 094022 [hep-ph/9711287] [INSPIRE].
  51. [51]
    Y. Kiyo and Y. Sumino, Perturbative heavy quarkonium spectrum at next-to-next-to-next-to-leading order, Phys. Lett. B 730 (2014) 76 [arXiv:1309.6571] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  52. [52]
    G.S. Bali, K. Schilling and A. Wachter, Complete \( \mathcal{O} \)(v 2) corrections to the static interquark potential from SU(3) gauge theory, Phys. Rev. D 56 (1997) 2566 [hep-lat/9703019] [INSPIRE].
  53. [53]
    Y. Koma, M. Koma and H. Wittig, Relativistic corrections to the static potential at \( \mathcal{O} \)(1/m) and \( \mathcal{O} \)(1/m 2), PoS(LATTICE 2007)111 [arXiv:0711.2322] [INSPIRE].
  54. [54]
    Y. Koma and M. Koma, Scaling study of the relativistic corrections to the static potential, PoS(LAT2009)122 [arXiv:0911.3204] [INSPIRE].
  55. [55]
    E. Eichten and B.R. Hill, Static effective field theory: 1/m corrections, Phys. Lett. B 243 (1990) 427 [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    A. Pineda and J. Soto, Matching at one loop for the four quark operators in NRQCD, Phys. Rev. D 58 (1998) 114011 [hep-ph/9802365] [INSPIRE].
  57. [57]
    A.V. Manohar and I.W. Stewart, Running of the heavy quark production current and 1/v potential in QCD, Phys. Rev. D 63 (2001) 054004 [hep-ph/0003107] [INSPIRE].

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Clara Peset
    • 1
  • Antonio Pineda
    • 1
  • Maximilian Stahlhofen
    • 2
    • 3
    Email author
  1. 1.Grup de Física Teòrica, Dept. Física and IFAE-BISTUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
  2. 2.Theory Group, Deutsches Elektronen-Synchrotron (DESY)HamburgGermany
  3. 3.PRISMA Cluster of Excellence, Institute of PhysicsJohannes Gutenberg UniversityMainzGermany

Personalised recommendations