Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A toy model of black hole complementarity

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 02 May 2016
  • Volume 2016, article number 4, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
A toy model of black hole complementarity
Download PDF
  • Souvik Banerjee1,
  • Jan-Willem Bryan1,
  • Kyriakos Papadodimas1,2 &
  • …
  • Suvrat Raju3 
  • 519 Accesses

  • 31 Citations

  • 15 Altmetric

  • 1 Mention

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We consider the algebra of simple operators defined in a time band in a CFT with a holographic dual. When the band is smaller than the light crossing time of AdS, an entire causal diamond in the center of AdS is separated from the band by a horizon. We show that this algebra obeys a version of the Reeh-Schlieder theorem: the action of the algebra on the CFT vacuum can approximate any low energy state in the CFT arbitrarily well, but no operator within the algebra can exactly annihilate the vacuum. We show how to relate local excitations in the complement of the central diamond to simple operators in the band. Local excitations within the diamond are invisible to the algebra of simple operators in the band by causality, but can be related to complicated operators called “precursors”. We use the Reeh-Schlieder theorem to write down a simple and explicit formula for these precursors on the boundary. We comment on the implications of our results for black hole complementarity and the emergence of bulk locality from the boundary.

Article PDF

Download to read the full article text

Similar content being viewed by others

Hairy black hole stability in AdS, quantum mechanics on the half-line and holography

Article Open access 09 October 2015

Covariant holographic entanglement negativity for disjoint intervals in \(AdS_3/CFT_2\)

Article Open access 17 June 2019

Gravitational black hole hair from event horizon supertranslations

Article Open access 16 June 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S.D. Mathur, The information paradox: A pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

    Article  ADS  Google Scholar 

  4. D. Marolf and J. Polchinski, Gauge/Gravity Duality and the Black Hole Interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S.L. Braunstein, S. Pirandola and K. Życzkowski, Better Late than Never: Information Retrieval from Black Holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].

    Article  ADS  Google Scholar 

  6. G. ’t Hooft, On the Quantum Structure of a Black Hole, Nucl. Phys. B 256 (1985) 727 [INSPIRE].

  7. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].

    ADS  Google Scholar 

  9. K. Papadodimas and S. Raju, Black Hole Interior in the Holographic Correspondence and the Information Paradox, Phys. Rev. Lett. 112 (2014) 051301 [arXiv:1310.6334] [INSPIRE].

    Article  ADS  Google Scholar 

  10. K. Papadodimas and S. Raju, Comments on the Necessity and Implications of State-Dependence in the Black Hole Interior, arXiv:1503.08825 [INSPIRE].

  11. K. Papadodimas and S. Raju, Local Operators in the Eternal Black Hole, Phys. Rev. Lett. 115 (2015) 211601 [arXiv:1502.06692] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].

    ADS  Google Scholar 

  16. R.C. Myers, J. Rao and S. Sugishita, Holographic Holes in Higher Dimensions, JHEP 06 (2014) 044 [arXiv:1403.3416] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Headrick, R.C. Myers and J. Wien, Holographic Holes and Differential Entropy, JHEP 10 (2014) 149 [arXiv:1408.4770] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D. Marolf, Holographic Thought Experiments, Phys. Rev. D 79 (2009) 024029 [arXiv:0808.2845] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. D. Marolf, Unitarity and Holography in Gravitational Physics, Phys. Rev. D 79 (2009) 044010 [arXiv:0808.2842] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. E. Mintun, J. Polchinski and V. Rosenhaus, Bulk-Boundary Duality, Gauge Invariance and Quantum Error Corrections, Phys. Rev. Lett. 115 (2015) 151601 [arXiv:1501.06577] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. S.B. Giddings, Hilbert space structure in quantum gravity: an algebraic perspective, JHEP 12 (2015) 099 [arXiv:1503.08207] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, arXiv:1512.06431 [INSPIRE].

  26. X. Dong, D. Harlow and A.C. Wall, Bulk Reconstruction in the Entanglement Wedge in AdS/CFT, arXiv:1601.05416 [INSPIRE].

  27. B. Freivogel, R.A. Jefferson and L. Kabir, Precursors, Gauge Invariance and Quantum Error Correction in AdS/CFT, arXiv:1602.04811 [INSPIRE].

  28. I.A. Morrison, Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography, JHEP 05 (2014) 053 [arXiv:1403.3426] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Bousso, B. Freivogel, S. Leichenauer, V. Rosenhaus and C. Zukowski, Null Geodesics, Local CFT Operators and AdS/CFT for Subregions, Phys. Rev. D 88 (2013) 064057 [arXiv:1209.4641] [INSPIRE].

    ADS  Google Scholar 

  30. R. Haag, Local quantum physics: Fields, particles, algebras, 2nd edition, Springer (1992).

  31. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Polchinski, L. Susskind and N. Toumbas, Negative energy, superluminosity and holography, Phys. Rev. D 60 (1999) 084006 [hep-th/9903228] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].

  36. I. Bena, On the construction of local fields in the bulk of AdS 5 and other spaces, Phys. Rev. D 62 (2000) 066007 [hep-th/9905186] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT and the fate of the BTZ singularity, AMS/IP Stud. Adv. Math. 44 (2008) 85 [arXiv:0710.4334] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  40. L. Susskind and N. Toumbas, Wilson loops as precursors, Phys. Rev. D 61 (2000) 044001 [hep-th/9909013] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. S.B. Giddings and M. Lippert, Precursors, black holes and a locality bound, Phys. Rev. D 65 (2002) 024006 [hep-th/0103231] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. D.L. Jafferis and S.J. Suh, The Gravity Duals of Modular Hamiltonians, arXiv:1412.8465 [INSPIRE].

  43. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    Souvik Banerjee, Jan-Willem Bryan & Kyriakos Papadodimas

  2. Theoretical Physics Department, CERN, CH-1211, Geneva 23, Switzerland

    Kyriakos Papadodimas

  3. International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Shivakote, Bengaluru, 560089, India

    Suvrat Raju

Authors
  1. Souvik Banerjee
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jan-Willem Bryan
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Kyriakos Papadodimas
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Suvrat Raju
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Souvik Banerjee.

Additional information

ArXiv ePrint: 1603.02812

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Bryan, JW., Papadodimas, K. et al. A toy model of black hole complementarity. J. High Energ. Phys. 2016, 4 (2016). https://doi.org/10.1007/JHEP05(2016)004

Download citation

  • Received: 16 April 2016

  • Accepted: 18 April 2016

  • Published: 02 May 2016

  • DOI: https://doi.org/10.1007/JHEP05(2016)004

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Black Holes
  • 1/N Expansion
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature