The decoupling limit of multi-gravity: multi-Galileons, dualities and more

Abstract

In this paper we investigate the decoupling limit of a particular class of multi-gravity theories, i.e. of theories of interacting spin-2 fields. We explicitly compute the interactions of helicity-0 modes in this limit, showing that they take on the form of multi- Galileons and dual forms. In the process we extend the recently discovered Galileon dualities, deriving a set of new multi-Galileon dualities. These are also intrinsically connected to healthy, but higher-derivative, multi-scalar field theories akin to ‘beyond Horndeski’ models.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

    Article  MATH  Google Scholar 

  3. [3]

    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    G. Tasinato, K. Koyama and G. Niz, Vector instabilities and self-acceleration in the decoupling limit of massive gravity, Phys. Rev. D 87 (2013) 064029 [arXiv:1210.3627] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    N.A. Ondo and A.J. Tolley, Complete Decoupling Limit of Ghost-free Massive Gravity, JHEP 11 (2013) 059 [arXiv:1307.4769] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    G. Gabadadze, K. Hinterbichler, D. Pirtskhalava and Y. Shang, Potential for general relativity and its geometry, Phys. Rev. D 88 (2013) 084003 [arXiv:1307.2245] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    J. Bonifacio and J. Noller, On strong coupling scales in massive gravity, arXiv:1412.4780 [INSPIRE].

  10. [10]

    S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free Massive Gravity with a General Reference Metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    S.F. Hassan and R.A. Rosen, Confirmation of the Secondary Constraint and Absence of Ghost in Massive Gravity and Bimetric Gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    M. Fasiello and A.J. Tolley, Cosmological Stability Bound in Massive Gravity and Bigravity, JCAP 12 (2013) 002 [arXiv:1308.1647] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    K. Hinterbichler and R.A. Rosen, Interacting Spin-2 Fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    C. Deffayet, J. Mourad and G. Zahariade, A note onsymmetricvielbeins in bimetric, massive, perturbative and non perturbative gravities, JHEP 03 (2013) 086 [arXiv:1208.4493] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    N. Khosravi, N. Rahmanpour, H.R. Sepangi and S. Shahidi, Multi-Metric Gravity via Massive Gravity, Phys. Rev. D 85 (2012) 024049 [arXiv:1111.5346] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    K. Nomura and J. Soda, When is Multimetric Gravity Ghost-free?, Phys. Rev. D 86 (2012) 084052 [arXiv:1207.3637] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    S.F. Hassan, A. Schmidt-May and M. von Strauss, Metric Formulation of Ghost-Free Multivielbein Theory, arXiv:1204.5202 [INSPIRE].

  19. [19]

    N. Tamanini, E.N. Saridakis and T.S. Koivisto, The Cosmology of Interacting Spin-2 Fields, JCAP 02 (2014) 015 [arXiv:1307.5984] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    J.H.C. Scargill, J. Noller and P.G. Ferreira, Cycles of interactions in multi-gravity theories, JHEP 12 (2014) 160 [arXiv:1410.7774] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    S. Deser, K. Izumi, Y.C. Ong and A. Waldron, Problems of massive gravities, Mod. Phys. Lett. A 30 (2015) 1540006 [arXiv:1410.2289] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    C. de Rham, M. Fasiello and A.J. Tolley, Galileon Duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    C. De Rham, L. Keltner and A.J. Tolley, Generalized galileon duality, Phys. Rev. D 90 (2014) 024050 [arXiv:1403.3690] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. [25]

    D.B. Fairlie, J. Govaerts and A. Morozov, Universal field equations with covariant solutions, Nucl. Phys. B 373 (1992) 214 [hep-th/9110022] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  27. [27]

    K. Kampf and J. Novotny, Unification of Galileon Dualities, JHEP 10 (2014) 006 [arXiv:1403.6813] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    N. Arkani-Hamed and M.D. Schwartz, Discrete gravitational dimensions, Phys. Rev. D 69 (2004) 104001 [hep-th/0302110] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. [31]

    M.D. Schwartz, Constructing gravitational dimensions, Phys. Rev. D 68 (2003) 024029 [hep-th/0303114] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. [32]

    J. Noller, J.H.C. Scargill and P.G. Ferreira, Interacting spin-2 fields in the Stückelberg picture, JCAP 02 (2014) 007 [arXiv:1311.7009] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    T. Kugo and N. Ohta, Covariant Approach to the No-ghost Theorem in Massive Gravity, PTEP 2014 (2014) 043B04 [arXiv:1401.3873] [INSPIRE].

    MATH  Google Scholar 

  34. [34]

    X. Gao, T. Kobayashi, M. Yamaguchi and D. Yoshida, Covariant Stückelberg analysis of de Rham-Gabadadze-Tolley massive gravity with a general fiducial metric, Phys. Rev. D 90 (2014) 124073 [arXiv:1409.3074] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    J. Bonifacio, P.G. Ferreira and K. Hinterbichler, TDiff and Weyl Invariant Massive Spin-2: Linear Theory, arXiv:1501.0315.

  36. [36]

    K. Hinterbichler, Ghost-Free Derivative Interactions for a Massive Graviton, JHEP 10 (2013) 102 [arXiv:1305.7227] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    S. Folkerts, A. Pritzel and N. Wintergerst, On ghosts in theories of self-interacting massive spin-2 particles, arXiv:1107.3157 [INSPIRE].

  38. [38]

    R. Kimura and D. Yamauchi, Derivative interactions in de Rham-Gabadadze-Tolley massive gravity, Phys. Rev. D 88 (2013) 084025 [arXiv:1308.0523] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    C. de Rham, A. Matas and A.J. Tolley, New Kinetic Interactions for Massive Gravity?, Class. Quant. Grav. 31 (2014) 165004 [arXiv:1311.6485] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    X. Gao, Derivative interactions for a spin-2 field at cubic order, Phys. Rev. D 90 (2014) 064024 [arXiv:1403.6781] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    J. Noller, On Consistent Kinetic and Derivative Interactions for Gravitons, JCAP 04 (2015) 025 [arXiv:1409.7692] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    A. Padilla, P.M. Saffin and S.-Y. Zhou, Multi-galileons, solitons and Derricks theorem, Phys. Rev. D 83 (2011) 045009 [arXiv:1008.0745] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form Galileons, Phys. Rev. D 82 (2010) 061501 [arXiv:1007.5278] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    M. Ostrogradsky Memoires de lAcademie Imperiale des Science de Saint-Petersbourg, (1850) 4:385.

  46. [46]

    R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    C. de Rham, G. Gabadadze and A.J. Tolley, Helicity Decomposition of Ghost-free Massive Gravity, JHEP 11 (2011) 093 [arXiv:1108.4521] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    G. Gabadadze, K. Hinterbichler, J. Khoury, D. Pirtskhalava and M. Trodden, A Covariant Master Theory for Novel Galilean Invariant Models and Massive Gravity, Phys. Rev. D 86 (2012) 124004 [arXiv:1208.5773] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    M. Zumalacárregui and J. García-Bellido, Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian, Phys. Rev. D 89 (2014) 064046 [arXiv:1308.4685] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Healthy theories beyond Horndeski, arXiv:1404.6495 [INSPIRE].

  51. [51]

    C. de Rham, G. Gabadadze and A.J. Tolley, Ghost free Massive Gravity in the Stúckelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    C. de Rham, L. Heisenberg and R.H. Ribeiro, On couplings to matter in massive (bi-)gravity, Class. Quant. Grav. 32 (2015) 035022 [arXiv:1408.1678] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  53. [53]

    J. Noller and S. Melville, The coupling to matter in Massive, Bi- and Multi-Gravity, JCAP 01 (2015) 003 [arXiv:1408.5131] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johannes Noller.

Additional information

ArXiv ePrint: 1503.02700

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noller, J., Scargill, J.H.C. The decoupling limit of multi-gravity: multi-Galileons, dualities and more. J. High Energ. Phys. 2015, 34 (2015). https://doi.org/10.1007/JHEP05(2015)034

Download citation

Keywords

  • Classical Theories of Gravity
  • Duality in Gauge Field Theories
  • Effective field theories