Skip to main content

Forms and algebras in (half-)maximal supergravity theories

A preprint version of the article is available at arXiv.

Abstract

The forms in D-dimensional (half-)maximal supergravity theories are discussed for 3 ≤ D ≤ 11. Superspace methods are used to derive consistent sets of Bianchi identities for all the forms for all degrees, and to show that they are soluble and fully compatible with supersymmetry. The Bianchi identities determine Lie superalgebras that can be extended to Borcherds superalgebras of a special type. It is shown that any Borcherds superalgebra of this type gives the same form spectrum, up to an arbitrary degree, as an associated Kac-Moody algebra. For maximal supergravity up to D-form potentials, this is the very extended Kac-Moody algebra E 11. It is also shown how gauging can be carried out in a simple fashion by deforming the Bianchi identities by means of a new algebraic element related to the embedding tensor. In this case the appropriate extension of the form algebra is a truncated version of the so-called tensor hierarchy algebra.

References

  1. E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 1, Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  2. E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 2. Twisted self-duality of doubled fields and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  3. P. Henry-Labordere, B. Julia and L. Paulot, Borcherds symmetries in M-theory, JHEP 04 (2002) 049 [hep-th/0203070] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. P. Henry-Labordere, B. Julia and L. Paulot, Real Borcherds superalgebras and M-theory, JHEP 04 (2003) 060 [hep-th/0212346] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. B.L. Julia, Dualities in the classical supergravity limits: dualizations, dualities and a detour via (4k + 2)-dimensions, hep-th/9805083 [INSPIRE].

  6. P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  7. T. Damour, M. Henneaux and H. Nicolai, E 10 and asmall tension expansionof M-theory, Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [INSPIRE].

    ADS  Article  Google Scholar 

  9. E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [INSPIRE].

    ADS  Article  Google Scholar 

  10. E.A. Bergshoeff, J. Gomis, T.A. Nutma and D. Roest, Kac-Moody spectrum of (half-)maximal supergravities, JHEP 02 (2008) 069 [arXiv:0711.2035] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. F. Riccioni and P.C. West, E 11 -extended spacetime and gauged supergravities, JHEP 02 (2008) 039 [arXiv:0712.1795] [INSPIRE].

    ADS  Article  Google Scholar 

  12. E.A. Bergshoeff, et al., E 10 and gauged maximal supergravity, JHEP 01 (2009) 020 [arXiv:0810.5767] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  13. F. Riccioni, D. Steele and P. West, The E 11 origin of all maximal supergravities: the hierarchy of field-strengths, JHEP 09 (2009) 095 [arXiv:0906.1177] [INSPIRE].

    ADS  Article  Google Scholar 

  14. E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited, JHEP 08 (2005) 098 [hep-th/0506013] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP 07 (2006) 018 [hep-th/0602280] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. B. de Wit and H. Nicolai, N = 8 supergravity with local SO(8) × SU(8) invariance, Phys. Lett. B 108 (1982) 285 [INSPIRE].

    ADS  Article  Google Scholar 

  17. M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 supergravity in five-dimensions, Phys. Lett. B 154 (1985) 268 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged maximally extended supergravity in seven-dimensions, Phys. Lett. B 143 (1984) 103 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. C.M. Hull, Noncompact gaugings of N = 8 supergravity, Phys. Lett. B 142 (1984) 39 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. C.M. Hull, More gaugings of N = 8 supergravity, Phys. Lett. B 148 (1984) 297 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. B. de Wit and H. Nicolai, The parallelizing S 7 torsion in gauged N = 8 supergravity, Nucl. Phys. B 231 (1984) 506 [INSPIRE].

    ADS  Article  Google Scholar 

  22. H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three-dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. B. de Wit, H. Samtleben and M. Trigiante, On lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. B. de Wit, H. Samtleben and M. Trigiante, Gauging maximal supergravities, Fortsch. Phys. 52 (2004) 489 [hep-th/0311225] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities, tensor hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  28. B. de Wit and H. Samtleben, The end of the p-form hierarchy, JHEP 08 (2008) 015 [arXiv:0805.4767] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  29. H. Nicolai and H. Samtleben, N = 8 matter coupled AdS 3 supergravities, Phys. Lett. B 514 (2001) 165 [hep-th/0106153] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  30. B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 671 (2003) 175 [hep-th/0307006] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. M. Weidner, Gauged supergravities in various spacetime dimensions, Fortsch. Phys. 55 (2007) 843 [hep-th/0702084] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. J. Greitz and P.S. Howe, Maximal supergravity in D = 10: forms, Borcherds algebras and superspace cohomology, JHEP 08 (2011) 146 [arXiv:1103.5053] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. J. Greitz and P.S. Howe, Half-maximal supergravity in three dimensions: supergeometry, differential forms and algebraic structure, JHEP 06 (2012) 177 [arXiv:1203.5585] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. J. Greitz and P.S. Howe, Maximal supergravity in three dimensions: supergeometry and differential forms, JHEP 07 (2011) 071 [arXiv:1103.2730] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. M. Henneaux, B.L. Julia and J. Levie, E 11 , Borcherds algebras and maximal supergravity, JHEP 04 (2012) 078 [arXiv:1007.5241] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  36. J. Palmkvist, Tensor hierarchies, Borcherds algebras and E 11, JHEP 02 (2012) 066 [arXiv:1110.4892] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. A. Kleinschmidt and J. Palmkvist, Oxidizing Borcherds symmetries, JHEP 03 (2013) 044 [arXiv:1301.1346] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. J. Palmkvist, Borcherds and Kac-Moody extensions of simple finite-dimensional Lie algebras, JHEP 06 (2012) 003 [arXiv:1203.5107] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. M. Henneaux and V. Lekeu, Kac-Moody and Borcherds symmetries of six-dimensional chiral supergravity, JHEP 03 (2015) 056 [arXiv:1502.00518] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. J. Palmkvist, The tensor hierarchy algebra, J. Math. Phys. 55 (2014) 011701 [arXiv:1305.0018] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. J. Greitz, P. Howe and J. Palmkvist, The tensor hierarchy simplified, Class. Quant. Grav. 31 (2014) 087001 [arXiv:1308.4972] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. E. Cremmer and S. Ferrara, Formulation of eleven-dimensional supergravity in superspace, Phys. Lett. B 91 (1980) 61 [INSPIRE].

    ADS  Article  Google Scholar 

  44. L. Brink and P.S. Howe, Eleven-dimensional supergravity on the mass-shell in superspace, Phys. Lett. B 91 (1980) 384 [INSPIRE].

    ADS  Article  Google Scholar 

  45. N. Dragon, Torsion and curvature in extended supergravity, Z. Phys. C 2 (1979) 29 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. P.S. Howe, Weyl superspace, Phys. Lett. B 415 (1997) 149 [hep-th/9707184] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. A. Candiello and K. Lechner, Duality in supergravity theories, Nucl. Phys. B 412 (1994) 479 [hep-th/9309143] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  48. M.F. Sohnius, Identities for Bianchi Identities, ICTP/79-80/44 (1979).

  49. L. Bonora, P. Pasti and M. Tonin, Superspace formulation of 10-D SUGRA+SYM theory à la Green-Schwarz, Phys. Lett. B 188 (1987) 335 [INSPIRE].

    ADS  Google Scholar 

  50. M. Cederwall, B.E.W. Nilsson and D. Tsimpis, Spinorial cohomology and maximally supersymmetric theories, JHEP 02 (2002) 009 [hep-th/0110069] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. P.S. Howe and D. Tsimpis, On higher order corrections in M-theory, JHEP 09 (2003) 038 [hep-th/0305129] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories, Phys. Lett. B 258 (1991) 141 [Addendum ibid. B 259 (1991) 511] [INSPIRE].

  53. P.S. Howe, Pure spinors, function superspaces and supergravity theories in ten-dimensions and eleven-dimensions, Phys. Lett. B 273 (1991) 90 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. N. Berkovits, ICTP lectures on covariant quantization of the superstring, hep-th/0209059 [INSPIRE].

  55. N. Berkovits and P.S. Howe, The cohomology of superspace, pure spinors and invariant integrals, JHEP 06 (2008) 046 [arXiv:0803.3024] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. F. Brandt, Supersymmetry algebra cohomology I: definition and general structure, J. Math. Phys. 51 (2010) 122302 [arXiv:0911.2118] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. F. Brandt, Supersymmetry algebra cohomology: II. Primitive elements in 2 and 3 dimensions, J. Math. Phys. 51 (2010) 112303 [arXiv:1004.2978] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  58. F. Brandt, Supersymmetry algebra cohomology III: Primitive elements in four and five dimensions, J. Math. Phys. 52 (2011) 052301 [arXiv:1005.2102] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  59. F. Brandt, Supersymmetry algebra cohomology IV: Primitive elements in all dimensions from D = 4 to D = 11, J. Math. Phys. 54 (2013) 052302 [arXiv:1303.6211] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  60. M.V. Movshev, A. Schwarz and R. Xu, Homology of Lie algebra of supersymmetries, arXiv:1011.4731 [INSPIRE].

  61. M.V. Movshev, A. Schwarz and R. Xu, Homology of Lie algebra of supersymmetries and of super Poincaré Lie algebra, Nucl. Phys. B 854 (2012) 483 [arXiv:1106.0335] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  62. A. Achucarro, J.M. Evans, P.K. Townsend and D.L. Wiltshire, Super p-branes, Phys. Lett. B 198 (1987) 441 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. E.A. Bergshoeff, J. Hartong, P.S. Howe, T. Ortín and F. Riccioni, IIA/IIB supergravity and ten-forms, JHEP 05 (2010) 061 [arXiv:1004.1348] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  64. P.S. Howe and P.C. West, The complete N = 2, D = 10 supergravity, Nucl. Phys. B 238 (1984) 181 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  65. M. Cederwall, A. von Gussich, B.E.W. Nilsson, P. Sundell and A. Westerberg, The Dirichlet super p-branes in ten-dimensional type IIA and IIB supergravity, Nucl. Phys. B 490 (1997) 179 [hep-th/9611159] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  66. G. Dall’Agata, K. Lechner and M. Tonin, D = 10, N = IIB supergravity: Lorentz invariant actions and duality, JHEP 07 (1998) 017 [hep-th/9806140] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  67. E. Bergshoeff, P.S. Howe, S. Kerstan and L. Wulff, Kappa-symmetric SL(2, ℝ) covariant D-brane actions, JHEP 10 (2007) 050 [arXiv:0708.2722] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. R. Slansky, An algebraic role for energy and number operators for multiparticle states, Nucl. Phys. B 389 (1993) 349 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  69. I. Bandos and T. Ortin, Tensor gauge fields of N = 8 supergravity, Phys. Rev. D 91 (2015) 085031 [arXiv:1502.00649] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  70. B.E.W. Nilsson and A.K. Tollsten, The geometrical off-shell structure of pure N = 1 D = 10 supergravity in superspace, Phys. Lett. B 169 (1986) 369 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  71. P.S. Howe and A. Umerski, On superspace supergravity in ten-dimensions, Phys. Lett. B 177 (1986) 163 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  72. E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  73. P.S. Howe and U. Lindström, The supercurrent in five-dimensions, Phys. Lett. B 103 (1981) 422 [INSPIRE].

    ADS  Article  Google Scholar 

  74. E. Bergshoeff, M. de Roo, B. de Wit and P. van Nieuwenhuizen, Ten-dimensional maxwell-einstein supergravity, its currents and the issue of its auxiliary fields, Nucl. Phys. B 195 (1982) 97 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  75. E. Bergshoeff and M. de Roo, The supercurrent in ten-dimensions, Phys. Lett. B 112 (1982) 53 [INSPIRE].

    ADS  Article  Google Scholar 

  76. P.S. Howe, H. Nicolai and A. Van Proeyen, Auxiliary fields and a superspace lagrangian for linearized ten-dimensional supergravity, Phys. Lett. B 112 (1982) 446 [INSPIRE].

    ADS  Article  Google Scholar 

  77. P.S. Howe, A superspace approach to extended conformal supergravity, Phys. Lett. B 100 (1981) 389 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  78. P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183 [hep-th/9505032] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  79. S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  80. M. Cederwall, U. Gran and B.E.W. Nilsson, D = 3, N = 8 conformal supergravity and the Dragon window, JHEP 09 (2011) 101 [arXiv:1103.4530] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  81. B.E.W. Nilsson, Simple ten-dimensional supergravity in superspace, Nucl. Phys. B 188 (1981) 176 [INSPIRE].

    ADS  Article  Google Scholar 

  82. S. Bellucci and S.J. Gates Jr., D = 10, N = 1 superspace supergravity and the Lorentz Chern-Simons form, Phys. Lett. B 208 (1988) 456 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  83. K. Lechner and M. Tonin, Superspace formulations of ten-dimensional supergravity, JHEP 06 (2008) 021 [arXiv:0802.3869] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  84. P.S. Howe, Heterotic supergeometry revisited, arXiv:0805.2893 [INSPIRE].

  85. S.J. Gates Jr., Ectoplasm has no topology: the prelude, in Dubna 1997, Supersymmetries and quantum symmetries, E. Ivanov et al. eds., Lecture Notes in Physics, Spinger (1997), hep-th/9709104 [INSPIRE].

  86. S.J. Gates Jr., M.T. Grisaru, M.E. Knutt-Wehlau and W. Siegel, Component actions from curved superspace: normal coordinates and ectoplasm, Phys. Lett. B 421 (1998) 203 [hep-th/9711151] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  87. P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in six-dimensions, Nucl. Phys. B 221 (1983) 331 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  88. M. Cederwall and J. Palmkvist, Borcherds superalgebras, constraints and partition functions, to appear.

  89. A. Le Diffon and H. Samtleben, Supergravities without an action: gauging the trombone, Nucl. Phys. B 811 (2009) 1 [arXiv:0809.5180] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  90. F. Riccioni, Local E 11 and the gauging of the trombone symmetry, Class. Quant. Grav. 27 (2010) 125009 [arXiv:1001.1316] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  91. J.J. Fernandez-Melgarejo, T. Ortín and E. Torrente-Lujan, Maximal nine dimensional supergravity, general gaugings and the embedding tensor, Fortsch. Phys. 60 (2012) 1012 [arXiv:1209.3774] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  92. H. J. Prins, Gauging the half-maximal trombone in 4D (2014).

  93. L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].

    ADS  Article  Google Scholar 

  94. P.S. Howe, N.D. Lambert and P.C. West, A new massive type IIA supergravity from compactification, Phys. Lett. B 416 (1998) 303 [hep-th/9707139] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  95. I.V. Lavrinenko, H. Lü and C.N. Pope, Fiber bundles and generalized dimensional reduction, Class. Quant. Grav. 15 (1998) 2239 [hep-th/9710243] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  96. I.V. Lavrinenko, H. Lü, C.N. Pope and K.S. Stelle, Superdualities, brane tensions and massive IIA/IIB duality, Nucl. Phys. B 555 (1999) 201 [hep-th/9903057] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  97. M.J. Duff, J.T. Liu and R. Minasian, Eleven-dimensional origin of string-string duality: a one loop test, Nucl. Phys. B 452 (1995) 261 [hep-th/9506126] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  98. P.S. Howe and U. Lindström, Higher order invariants in extended supergravity, Nucl. Phys. B 181 (1981) 487 [INSPIRE].

    ADS  Article  Google Scholar 

  99. W. Siegel, On-shell O(N) supergravity in superspace, Nucl. Phys. B 177 (1981) 325 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  100. V.G. Kac, A sketch of Lie superalgebra theory, Commun. Math. Phys. 53 (1977) 31 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  101. V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8 [INSPIRE].

    MATH  Article  Google Scholar 

  102. U. Ray, A character formula for generalized Kac-Moody superalgebras, J. Algebra. 177 (1995) 154.

    MathSciNet  MATH  Article  Google Scholar 

  103. U. Ray, Automorphic forms and Lie superalgebras, Springer, Germany (2006).

    MATH  Google Scholar 

  104. M. Wakimoto, Infinite-dimensional Lie algebras, American Mathematical Society, U.S.A. (2001).

    MATH  Book  Google Scholar 

  105. V.G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. AN USSR 32 (1968) 1923.

    MathSciNet  Google Scholar 

  106. R.E. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988) 501.

    MathSciNet  MATH  Article  Google Scholar 

  107. V.G. Kac, Infinite dimensional Lie algebras, 3rd edition, Cambridge University Press, Cambridge U.K. (1990).

    MATH  Book  Google Scholar 

  108. L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie algebras and superalgebras. Academic Press, U.S.A. (2000).

    MATH  Google Scholar 

  109. D.A. Leites, M.V. Saveliev and V.V. Serganova, Embeddings of Lie superalgebra osp(1|2) and the associated nonlinear supersymmetric equations, in Group theoretical methods in physics, M.A. Markov et al. eds., VUN Science Press (1986).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Palmkvist.

Additional information

ArXiv ePrint: 1503.00015

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Howe, P., Palmkvist, J. Forms and algebras in (half-)maximal supergravity theories. J. High Energ. Phys. 2015, 32 (2015). https://doi.org/10.1007/JHEP05(2015)032

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2015)032

Keywords

  • Supersymmetry and Duality
  • Extended Supersymmetry
  • Superspaces
  • Supergravity Models