The capacity of black holes to transmit quantum information

Open Access
Article

Abstract

We study the properties of the quantum information transmission channel that emerges from the quantum dynamics of particles interacting with a black hole horizon. We calculate the quantum channel capacity in two limiting cases where a single-letter capacity is known to exist: the limit of perfectly reflecting and perfectly absorbing black holes. We find that the perfectly reflecting black hole channel is closely related to the Unruh channel and that its capacity is non-vanishing, allowing for the perfect reconstruction of quantum information outside of the black hole horizon. We also find that the complementary channel (transmitting entanglement behind the horizon) is entanglement-breaking in this case, with vanishing capacity. We then calculate the quantum capacity of the black hole channel in the limit of a perfectly absorbing black hole and find that this capacity vanishes, while the capacity of the complementary channel is non-vanishing instead. Rather than inviting a new crisis for quantum physics, this finding instead is in accordance with the quantum no-cloning theorem, because it guarantees that there are no space-like surfaces that contain both the sender’s quantum state and the receiver’s reconstructed quantum state.

Keywords

Black Holes Statistical Methods 

References

  1. [1]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    R.M. Wald, Quantum Field Theory in curved spacetime and black hole, University of Chicago Press, Chicago U.S.A. (1994).MATHGoogle Scholar
  3. [3]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S.D. Mathur, What the information paradox is not, arXiv:1108.0302 [INSPIRE].
  5. [5]
    A. Gomberoff and D. Marolf eds., Lectures on quantum gravity, Springer Science+Business Media, Germany (2005).MATHGoogle Scholar
  6. [6]
    E. Papantonopoulos ed., Physics of black holes: a guided tour, volume 769, Springer Verlag, Germany (2009).MATHGoogle Scholar
  7. [7]
    M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge U.K. (2010).CrossRefMATHGoogle Scholar
  8. [8]
    M. Wilde, Quantum information theory, Cambridge University Press, Cambridge U.K. (2013).CrossRefMATHGoogle Scholar
  9. [9]
    A.S. Holevo, Quantum systems, channels, information: a mathematical introduction, De Gruyter, Germany (2012).CrossRefMATHGoogle Scholar
  10. [10]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Larjo, D.A. Lowe and L. Thorlacius, Black holes without firewalls, Phys. Rev. D 87 (2013) 104018 [arXiv:1211.4620] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S.B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88 (2013) 064023 [arXiv:1211.7070] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity:Alice fuzzes but may not even know it!’, JHEP 09 (2013) 012 [arXiv:1210.6996] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Nomura, J. Varela and S.J. Weinberg, Complementarity endures: no firewall for an infalling observer, JHEP 03 (2013) 059 [arXiv:1207.6626] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Brádler and C. Adami, Vanishing stress-energy tensor for stimulated radiation at the black hole horizon: no firewalls for Alice, in preparation.Google Scholar
  18. [18]
    C. Adami and G.L. ver Steeg, Classical information transmission capacity of quantum black holes, Class. Quant. Grav. 31 (2014) 075015 [gr-qc/0407090] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    W.K. Wootters and W.H. Zurek, A single quantum cannot be cloned, Nature 299 (1982) 802 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    D. Dieks, Communication by EPR devices, Phys. Lett. A 92 (1982) 271 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J. Smolin and J. Oppenheim, Information locking in black holes, Phys. Rev. Lett. 96 (2006) 081302 [hep-th/0507287] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    R. Sorkin, A simple derivation of stimulated emission by black holes, Class. Quant. Grav. 4 (1987) L149 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.D. Bekenstein and A. Meisels, Einstein A and B coefficients for a black hole, Phys. Rev. D 15 (1977) 2775 [INSPIRE].ADSGoogle Scholar
  26. [26]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982).CrossRefMATHGoogle Scholar
  27. [27]
    D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].ADSGoogle Scholar
  28. [28]
    K. Brádler, T. Jochym-O’Connor and R. Jáuregui, Capacities of Grassmann channels, J. Math. Phys. 52 (2011) 062202 [arXiv:1011.2215] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    S. Lloyd, Capacity of the noisy quantum channel, Phys. Rev. A 55 (1997) 1613 [quant-ph/9604015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    P.W. Shor, The quantum channel capacity and coherent information, in Lecture notes, MSRI Workshop on Quantum Computation, (2002).Google Scholar
  31. [31]
    I. Devetak, The private classical capacity and quantum capacity of a quantum channel, IEEE Trans. Informat. Theor. 51 (2005) 44 [quant-ph/0304127].MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    P. Hayden, M. Horodecki, A. Winter and J. Yard, A decoupling approach to the quantum capacity, Open Syst. Inf. Dyn. 15 (2008) 7 [quant-ph/0702005].MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    R. Klesse, A random coding based proof for the quantum coding theorem, Open Syst. Inf. Dyn. 15 (2008) 21.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    P.W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52 (1995) R2493.ADSCrossRefGoogle Scholar
  35. [35]
    D. Gottesman, Stabilizer codes and quantum error correction, quant-ph/9705052 [INSPIRE].
  36. [36]
    H. Barnum, M.A. Nielsen and B. Schumacher, Information transmission through a noisy quantum channel, Phys. Rev. A 57 (1998) 4153 [quant-ph/9702049] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Smith, J.A. Smolin and A. Winter, The quantum capacity with symmetric side channels, IEEE Trans. Informat. Theor. 54 (2008) 4208 [quant-ph/0607039].MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  39. [39]
    T. Jacobson, Black hole radiation in the presence of a short distance cutoff, Phys. Rev. D 48 (1993) 728 [hep-th/9303103] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    S.L. Braunstein and A.K. Pati, Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox, Phys. Rev. Lett. 98 (2007) 080502 [gr-qc/0603046] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    I. Devetak and P.W. Shor, The capacity of a quantum channel for simultaneous transmission of classical and quantum information, Commun. Math. Phys. 256 (2005) 287 [quant-ph/0311131].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    J. Harrington and J. Preskill, Achievable rates for the Gaussian quantum channel, Phys. Rev. A 64 (2001) 062301 [quant-ph/0105058] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  44. [44]
    W.H. Zurek, Entropy evaporated by a black hole, Phys. Rev. Lett. 49 (1982) 1683 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.D. Bekenstein, How fast does information leak out from a black hole?, Phys. Rev. Lett. 70 (1993) 3680 [hep-th/9301058] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    R.M. Wald, Stimulated emission effects in particle creation near black holes, Phys. Rev. D 13 (1976) 3176 [INSPIRE].ADSGoogle Scholar
  47. [47]
    P. Panangaden and R.M. Wald, Probability distribution for radiation from a black hole in the presence of incoming radiation, Phys. Rev. D 16 (1977) 929 [INSPIRE].ADSGoogle Scholar
  48. [48]
    J. Audretsch and R. Müller, Amplification of the black hole Hawking radiation by stimulated emission, Phys. Rev. D 45 (1992) 513 [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    K. Brádler, P. Hayden and P. Panangaden, Private information via the Unruh effect, JHEP 08 (2009) 074 [arXiv:0807.4536] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    K. Brádler, N. Dutil, P. Hayden and A. Muhammad, Conjugate degradability and the quantum capacity of cloning channels, J. Math. Phys. 51 (2010) 072201 [arXiv:0909.3297].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    K. Brádler, An infinite sequence of additive channels: the classical capacity of cloning channels, IEEE Trans. Informat. Theor. 57 (2011) 5497 [arXiv:0903.1638].MathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    K. Brádler, P. Hayden and P. Panangaden, Quantum communication in Rindler spacetime, Commun. Math. Phys. 312 (2012) 361 [arXiv:1007.0997] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    S. Takagi, Vacuum noise and stress induced by uniform acceleration Hawking-Unruh effect in Rindler manifold of arbitrary dimension, Progr. Theor. Phys. Suppl. 88 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787 [arXiv:0710.5373] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    S.A. Fulling, Nonuniqueness of canonical field quantization in Riemannian space-time, Phys. Rev. D 7 (1973) 2850 [INSPIRE].ADSGoogle Scholar
  56. [56]
    P.C.W. Davies, Scalar particle production in Schwarzschild and Rindler metrics, J. Phys. A 8 (1975) 609 [INSPIRE].ADSGoogle Scholar
  57. [57]
    C. Adami and G.L. ver Steeg, Black holes are almost optimal quantum cloners, quant-ph/0601065 [INSPIRE].
  58. [58]
    V. Bužek and M. Hillery, Quantum copying: beyond the no cloning theorem, Phys. Rev. A 54 (1996) 1844 [quant-ph/9607018] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    N. Gisin and S. Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79 (1997) 2153 [quant-ph/9705046] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    L. Mandel, Is a photon amplifier always polarization dependent?, Nature 304 (1983) 188.ADSCrossRefGoogle Scholar
  61. [61]
    V. Scarani, S. Iblisdir, N. Gisin and A. Acín, Quantum cloning, Rev. Mod. Phys. 77 (2005) 1225 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    E.H. Lieb and J.P. Solovej, Proof of an entropy conjecture for Bloch coherent spin states and its generalizations, arXiv:1208.3632.
  63. [63]
    V. Bužek, M. Hillery and R.F. Werner, Optimal manipulations with qubits: universal-NOT gate, Phys. Rev. A 60 (1999) R2626 [quant-ph/9901053] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    N.J. Cerf and J. Fiurášek, Optical quantum cloning, in Progress in optics, E. Wolf ed., volume 49, Elsevier, The Netherlands (2006).Google Scholar
  65. [65]
    T.S. Cubitt, M.B. Ruskai and G. Smith, The structure of degradable quantum channels, J. Math. Phys. 49 (2008) 102104 [arXiv:0802.1360].ADSMathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    P. Panangaden, private correspondence.Google Scholar
  67. [67]
    A. Einstein, Zur Quantentheorie der Strahlung (in German), Phys. Z. 18 (1917) 121.Google Scholar
  68. [68]
    R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81 (2009) 865 [quant-ph/0702225] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    U. Leonhardt, Quantum physics of simple optical instruments, Rept. Prog. Phys. 66 (2003) 1207 [quant-ph/0305007] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C. King, The capacity of the quantum depolarizing channel, IEEE Trans. Informat. Theor. 49 (2003) 221 [quant-ph/0204172].MathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].ADSMathSciNetGoogle Scholar
  72. [72]
    K. Brádler and C. Adami, Black holes as bosonic Gaussian channels, arXiv:1405.1097 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Astronomy and PhysicsSaint Mary’s UniversityHalifaxCanada
  2. 2.Department of Physics and AstronomyMichigan State UniversityEast LansingUnited States

Personalised recommendations