Abstract
We consider two distinct classes of Yukawa unified supersymmetric SO(10) models with non-universal and universal soft supersymmetry breaking (SSB) gaugino masses at M GUT. In both cases, we assume that the third family SSB sfermion masses at M GUT are different from the corresponding sfermion masses of the first two families (which are equal). For the SO(10) model with essentially arbitrary (non-universal) gaugino masses at M GUT, it is shown that t-b-τ Yukawa coupling unification is compatible, among other things, with the 125 GeV Higgs boson mass, the WMAP relic dark matter density, and with the resolution of the apparent muon g − 2 anomaly. The colored sparticles in this case all turn out to be quite heavy, of order 5 TeV or more, but the sleptons (smuon and stau) can be very light, of order 200 GeV or so. For the SO(10) model with universal gaugino masses and NUHM2 boundary conditions, the muon g − 2 anomaly cannot be resolved. However, the gluino in this class of models is not too heavy, ≲ 3 TeV, and therefore may be found at the LHC.
Article PDF
References
S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the scale of unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].
W.J. Marciano and G. Senjanović, Predictions of supersymmetric Grand Unified Theories, Phys. Rev. D 25 (1982) 3092 [INSPIRE].
M.B. Einhorn and D.R.T. Jones, The weak mixing angle and unification mass in supersymmetric SU(5), Nucl. Phys. B 196 (1982) 475 [INSPIRE].
U. Amaldi, W. de Boer and H. Furstenau, Comparison of Grand Unified Theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].
P. Langacker and M.-X. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].
B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric guts, Phys. Rev. D 44 (1991) 1613 [INSPIRE].
B. Ananthanarayan, G. Lazarides and Q. Shafi, Radiative electroweak breaking and sparticle spectroscopy with tan β ≃ m t /m b , Phys. Lett. B 300 (1993) 245 [INSPIRE].
Q. Shafi and B. Ananthanarayan, Will LEP-2 narrowly miss the Weinberg-Salam Higgs boson?, in Trieste HEP Cosmol., Trieste Italy (1991), pg. 233 [INSPIRE].
H. Baer, S. Raza and Q. Shafi, A heavier gluino from t-b-τ Yukawa-unified SUSY, Phys. Lett. B 712 (2012) 250 [arXiv:1201.5668] [INSPIRE].
A. Anandakrishnan, S. Raby and A. Wingerter, Yukawa unification predictions for the LHC, Phys. Rev. D 87 (2013) 055005 [arXiv:1212.0542] [INSPIRE].
A. Anandakrishnan, B.C. Bryant, S. Raby and A. Wingerter, LHC phenomenology of SO(10) models with Yukawa unification, Phys. Rev. D 88 (2013) 075002 [arXiv:1307.7723] [INSPIRE].
I. Gogoladze, Q. Shafi and C.S. Un, 125 GeV Higgs boson from t-b-τ Yukawa unification, JHEP 07 (2012) 055 [arXiv:1203.6082] [INSPIRE].
M. Badziak, Yukawa unification in SUSY SO(10) in light of the LHC Higgs data, Mod. Phys. Lett. A 27 (2012) 1230020 [arXiv:1205.6232] [INSPIRE].
A.S. Joshipura and K.M. Patel, Yukawa coupling unification in SO(10) with positive μ and a heavier gluino, Phys. Rev. D 86 (2012) 035019 [arXiv:1206.3910] [INSPIRE].
A. Anandakrishnan and S. Raby, Yukawa unification predictions with effective “mirage” mediation, Phys. Rev. Lett. 111 (2013) 211801 [arXiv:1303.5125] [INSPIRE].
M. Badziak, M. Olechowski and S. Pokorski, Light staus and enhanced Higgs diphoton rate with non-universal gaugino masses and SO(10) Yukawa unification, JHEP 10 (2013) 088 [arXiv:1307.7999] [INSPIRE].
M.A. Ajaib, I. Gogoladze and Q. Shafi, Sparticle spectroscopy from SO(10) GUT with a unified Higgs sector, Phys. Rev. D 88 (2013) 095019 [arXiv:1307.4882] [INSPIRE].
I. Gogoladze, Q. Shafi and C.S. Un, Higgs boson mass from t-b-τ Yukawa unification, JHEP 08 (2012) 028 [arXiv:1112.2206] [INSPIRE].
M. Adeel Ajaib, I. Gogoladze, Q. Shafi and C.S. Un, A predictive Yukawa unified SO(10) model: Higgs and sparticle masses, JHEP 07 (2013) 139 [arXiv:1303.6964] [INSPIRE].
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric Standard Model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].
Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric Standard Model, Phys. Lett. B 262 (1991) 54 [INSPIRE].
A. Yamada, Radiative corrections to the Higgs masses in the minimal supersymmetric Standard Model, Phys. Lett. B 263 (1991) 233 [INSPIRE].
J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].
J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].
H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].
I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, Top quark and Higgs boson masses in supersymmetric models, arXiv:1402.2924 [INSPIRE].
T. Blazek, R. Dermisek and S. Raby, Predictions for Higgs and supersymmetry spectra from SO(10) Yukawa unification with μ > 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097] [INSPIRE].
T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [INSPIRE].
I. Gogoladze, R. Khalid and Q. Shafi, Yukawa unification and neutralino dark matter in SU(4) c × SU(2) L × SU(2) R , Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204] [INSPIRE].
I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, t-b-τ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum, JHEP 12 (2010) 055 [arXiv:1008.2765] [INSPIRE].
I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, Higgs and sparticle spectroscopy with gauge-Yukawa unification, JHEP 06 (2011) 117 [arXiv:1102.0013] [INSPIRE].
I. Gogoladze, Q. Shafi and C.S. Un, SO(10) Yukawa unification with μ < 0, Phys. Lett. B 704 (2011) 201 [arXiv:1107.1228] [INSPIRE].
CMS collaborations, CMS at the high-energy frontier. contribution to the update of the european strategy for particle physics, CMS-NOTE-2012-006, CERN, Geneva Switzerland (2012).
S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
H. Baer, A. Belyaev, T. Krupovnickas and A. Mustafayev, SUSY normal scalar mass hierarchy reconciles (g − 2) μ , b → sγ and relic density, JHEP 06 (2004) 044 [hep-ph/0403214] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α MZ , Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and \( \alpha \left( {M_Z^2} \right) \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].
S. Mohanty, S. Rao and D.P. Roy, Reconciling the muon g − 2 and dark matter relic density with the LHC results in nonuniversal gaugino mass models, JHEP 09 (2013) 027 [arXiv:1303.5830] [INSPIRE].
S. Akula and P. Nath, Gluino-driven radiative breaking, Higgs boson mass, muon g − 2 and the Higgs diphoton decay in supergravity unification, Phys. Rev. D 87 (2013) 115022 [arXiv:1304.5526] [INSPIRE].
J. Chakrabortty, S. Mohanty and S. Rao, Non-universal gaugino mass GUT models in the light of dark matter and LHC constraints, JHEP 02 (2014) 074 [arXiv:1310.3620] [INSPIRE].
M. Ibe, T.T. Yanagida and N. Yokozaki, Muon g − 2 and 125 GeV Higgs in split-family supersymmetry, JHEP 08 (2013) 067 [arXiv:1303.6995] [INSPIRE].
T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric Standard Model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
S.P. Martin and J.D. Wells, Muon anomalous magnetic dipole moment in supersymmetric theories, Phys. Rev. D 64 (2001) 035003 [hep-ph/0103067] [INSPIRE].
G.F. Giudice, P. Paradisi, A. Strumia and A. Strumia, Correlation between the Higgs decay rate to two photons and the muon g − 2, JHEP 10 (2012) 186 [arXiv:1207.6393] [INSPIRE].
F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, \( \overline{p}p \) and e + e − reactions, hep-ph/0312045 [INSPIRE].
J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [INSPIRE].
Y. Yamada, SUSY and GUT threshold effects in SUSY SU(5) models, Z. Phys. C 60 (1993) 83 [INSPIRE].
J.L. Chkareuli and I.G. Gogoladze, Unification picture in minimal supersymmetric SU(5) model with string remnants, Phys. Rev. D 58 (1998) 055011 [hep-ph/9803335] [INSPIRE].
D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric Standard Model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
CDF collaboration, T. Aaltonen et al., Search for \( B_s^0 \) → μ + μ − and \( B_d^0 \) → μ + μ − decays with 2 fb−1 of \( p\overline{p} \) collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [INSPIRE].
Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [INSPIRE].
CDF and D0 collaborations, T.E.W. Group, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [INSPIRE].
CMS collaboration, Search for MSSM neutral Higgs bosons decaying to τ pairs in pp collisions, CMS-PAS-HIG-12-050, CERN, Geneva Switzerland (2012).
L.E. Ibáñez and G.G. Ross, SU(2) L × U(1) symmetry breaking as a radiative effect of supersymmetry breaking in GUTs, Phys. Lett. B 110 (1982) 215 [INSPIRE].
K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Aspects of Grand Unified Models with softly broken supersymmetry, Prog. Theor. Phys. 68 (1982) 927 [Erratum ibid. 70 (1983) 330] [INSPIRE].
L.E. Ibáñez, Locally supersymmetric SU(5) grand unification, Phys. Lett. B 118 (1982) 73 [INSPIRE].
J.R. Ellis, D.V. Nanopoulos and K. Tamvakis, Grand unification in simple supergravity, Phys. Lett. B 121 (1983) 123 [INSPIRE].
L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal low-energy supergravity, Nucl. Phys. B 221 (1983) 495 [INSPIRE].
ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of \( \sqrt{s} \) = 7 TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].
CMS collaboration, Search for supersymmetry in hadronic final states using M T 2 in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].
H. Baer, C. Balázs and A. Belyaev, Neutralino relic density in minimal supergravity with coannihilations, JHEP 03 (2002) 042 [hep-ph/0202076] [INSPIRE].
H. Baer, C. Balázs, J. Ferrandis and X. Tata, Impact of muon anomalous magnetic moment on supersymmetric models, Phys. Rev. D 64 (2001) 035004 [hep-ph/0103280] [INSPIRE].
LHCb collaboration, First evidence for the decay \( B_s^0 \) → μ + μ −, Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].
Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].
WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing bino contribution to muon g − 2, JHEP 11 (2013) 013 [arXiv:1309.3065] [INSPIRE].
J.L. Leva, A fast normal random number generator, Math. Softw. 18 (1992) 449.
J.L. Leva, Algorithm 712: a normal random number generator, Math. Softw. 18 (1992) 454.
B. Ananthanarayan and P.N. Pandita, Sparticle mass spectrum in Grand Unified Theories, Int. J. Mod. Phys. A 22 (2007) 3229 [arXiv:0706.2560] [INSPIRE].
S. Bhattacharya, A. Datta and B. Mukhopadhyaya, Non-universal gaugino masses: a signal-based analysis for the Large Hadron Collider, JHEP 10 (2007) 080 [arXiv:0708.2427] [INSPIRE].
S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].
S.P. Martin, Non-universal gaugino masses and semi-natural supersymmetry in view of the Higgs boson discovery, Phys. Rev. D 89 (2014) 035011 [arXiv:1312.0582] [INSPIRE].
A. Anandakrishnan and S. Raby, Yukawa unification predictions with effective “mirage” mediation, Phys. Rev. Lett. 111 (2013) 211801 [arXiv:1303.5125] [INSPIRE].
M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].
N. Okada, S. Raza and Q. Shafi, Particle spectroscopy of supersymmetric SU(5) in light of 125 GeV Higgs and muon g − 2 data, arXiv:1307.0461 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1402.4918
On leave of absence from: Andronikashvili Institute of Physics, 0177 Tbilisi, Georgia. (Ilia Gogoladze)
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ajaib, M.A., Gogoladze, I., Shafi, Q. et al. Split sfermion families, Yukawa unification and muon g − 2. J. High Energ. Phys. 2014, 79 (2014). https://doi.org/10.1007/JHEP05(2014)079
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2014)079