Skip to main content

Supersymmetric geometries of IIA supergravity I

A preprint version of the article is available at arXiv.

Abstract

IIA supergravity backgrounds preserving one supersymmetry locally admit four types of Killing spinors distinguished by the orbits of Spin(9,1) on the space of spinors. We solve the Killing spinor equations of IIA supergravity with and without cosmological constant for Killing spinors representing two of these orbits, with isotropy groups Spin(7) and Spin(7)⋉ℝ8. In both cases, we identify the geometry of spacetime and express the fluxes in terms of the geometry. We find that the geometric constraints on backgrounds with a Spin(7)⋉ℝ8 invariant Killing spinor are identical to those found for heterotic backgrounds preserving one supersymmetry.

References

  1. J.M. Figueroa-O’Farrill and G. Papadopoulos, Maximally supersymmetric solutions of ten-dimensional and eleven-dimensional supergravities, JHEP 03 (2003) 048 [hep-th/0211089] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. J.P. Gauntlett and S. Pakis, The Geometry of D = 11 Killing spinors, JHEP 04 (2003) 039 [hep-th/0212008] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. J.P. Gauntlett, J.B. Gutowski and S. Pakis, The Geometry of D = 11 null Killing spinors, JHEP 12 (2003) 049 [hep-th/0311112] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. J. Gillard, U. Gran and G. Papadopoulos, The Spinorial geometry of supersymmetric backgrounds, Class. Quant. Grav. 22 (2005) 1033 [hep-th/0410155] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. U. Gran, J. Gutowski and G. Papadopoulos, The Spinorial geometry of supersymmetric IIB backgrounds, Class. Quant. Grav. 22 (2005) 2453 [hep-th/0501177] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  6. U. Gran, J. Gutowski and G. Papadopoulos, The G 2 spinorial geometry of supersymmetric IIB backgrounds, Class. Quant. Grav. 23 (2006) 143 [hep-th/0505074] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  7. U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, N = 31 is not IIB, JHEP 02 (2007) 044 [hep-th/0606049] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, N = 31, D = 11, JHEP 02 (2007) 043 [hep-th/0610331] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, IIB solutions with N > 28 Killing spinors are maximally supersymmetric, JHEP 12 (2007) 070 [arXiv:0710.1829] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. U. Gran, J. Gutowski and G. Papadopoulos, Classification of IIB backgrounds with 28 supersymmetries, JHEP 01 (2010) 044 [arXiv:0902.3642] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. J.M. Figueroa-O’Farrill and S. Gadhia, M-theory preons cannot arise by quotients, JHEP 06 (2007) 043 [hep-th/0702055] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. U. Gran, P. Lohrmann and G. Papadopoulos, The Spinorial geometry of supersymmetric heterotic string backgrounds, JHEP 02 (2006) 063 [hep-th/0510176] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. U. Gran, G. Papadopoulos, D. Roest and P. Sloane, Geometry of all supersymmetric type-I backgrounds, JHEP 08 (2007) 074 [hep-th/0703143] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. I.A. Bandos, J.A. de Azcarraga and O. Varela, On the absence of BPS preonic solutions in IIA and IIB supergravities, JHEP 09 (2006) 009 [hep-th/0607060] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. U. Gran, P. Lohrmann and G. Papadopoulos, Geometry of type-II common sector N = 2 backgrounds, JHEP 06 (2006) 049 [hep-th/0602250] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. M. Huq and M.A. Namazie, Kaluza-Klein Supergravity in Ten-dimensions, Class. Quant. Grav. 2 (1985) 293 [Erratum ibid. 2 (1985) 597] [INSPIRE].

  17. F. Giani and M. Pernici, N = 2 supergravity in ten-dimensions, Phys. Rev. D 30 (1984) 325 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. I.C.G. Campbell and P.C. West, N = 2 D = 10 Nonchiral Supergravity and Its Spontaneous Compactification, Nucl. Phys. B 243 (1984) 112 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. L.J. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].

    ADS  Article  Google Scholar 

  20. E.A. Bergshoeff, J. Hartong, P.S. Howe, T. Ortín and F. Riccioni, IIA/IIB Supergravity and Ten-forms, JHEP 05 (2010) 061 [arXiv:1004.1348] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP 07 (2006) 018 [hep-th/0602280] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. C. Hull, Holonomy and symmetry in M-theory, hep-th/0305039 [INSPIRE].

  23. M.J. Duff and J.T. Liu, Hidden space-time symmetries and generalized holonomy in M-theory, Nucl. Phys. B 674 (2003) 217 [hep-th/0303140] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  24. G. Papadopoulos and D. Tsimpis, The Holonomy of the supercovariant connection and Killing spinors, JHEP 07 (2003) 018 [hep-th/0306117] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. G. Papadopoulos and D. Tsimpis, The Holonomy of IIB supercovariant connection, Class. Quant. Grav. 20 (2003) L253 [hep-th/0307127] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. U. Gran, J. Gutowski and G. Papadopoulos, Invariant Killing spinors in 11D and type-II supergravities, Class. Quant. Grav. 26 (2009) 155004 [arXiv:0802.2040] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. M. Fernandez, A classification of Riemannian manifolds with structure Spin(7), Ann. Mat. Pura Appl. 143 (1982) 101.

    MathSciNet  Article  MATH  Google Scholar 

  28. F. Cabrera, Riemannian manifolds with Spin(7)-structure, Publ. Math. Debrecen 46 (1995) 271.

    MathSciNet  MATH  Google Scholar 

  29. M.J. Duff, M theory on manifolds of G 2 holonomy: The First twenty years, hep-th/0201062 [INSPIRE].

  30. U. Gran, GAMMA: A Mathematica package for performing gamma matrix algebra and Fierz transformations in arbitrary dimensions, hep-th/0105086 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Gran.

Additional information

ArXiv ePrint: 1401.6900

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gran, U., Papadopoulos, G. & von Schultz, C. Supersymmetric geometries of IIA supergravity I. J. High Energ. Phys. 2014, 24 (2014). https://doi.org/10.1007/JHEP05(2014)024

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2014)024

Keywords

  • Supergravity Models
  • Superstring Vacua