Skip to main content
Log in

Thermal evolution of the non-supersymmetric metastable vacua in \( \mathcal{N}=2 \) SU(2) SYM softly broken to \( \mathcal{N}=1 \)

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

It has been shown that four dimensional \( \mathcal{N}=2 \) gauge theories, softly broken to \( \mathcal{N}=1 \) by a superpotential term, can accommodate metastable non-supersymmetric vacua in their moduli space. We study the SU(2) theory at high temperatures in order to determine whether a cooling universe settles in the metastable vacuum at zero temperature. We show that the corrections to the free energy because of the BPS dyons are such that may destroy the existence of the metastable vacuum at high temperatures. Nevertheless we demonstrate the universe can settle in the metastable vacuum, provided that the following two conditions are hold: first the superpotential term is not arbitrarily small in comparison to the strong coupling scale of the gauge theory, and second the metastable vacuum lies in the strongly coupled region of the moduli space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Kitano, Dynamical GUT breaking and mu-term driven supersymmetry breaking, Phys. Rev. D 74 (2006) 115002 [hep-ph/0606129] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. T. Banks, Remodeling the Pentagon After the Events of 2/23/06, hep-ph/0606313 [INSPIRE].

  4. M. Schmaltz and R. Sundrum, Conformal Sequestering Simplified, JHEP 11 (2006) 011 [hep-th/0608051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Dine and J. Mason, Gauge mediation in metastable vacua, Phys. Rev. D 77 (2008) 016005 [hep-ph/0611312] [INSPIRE].

    ADS  Google Scholar 

  6. R. Kitano, H. Ooguri and Y. Ookouchi, Direct Mediation of Meta-Stable Supersymmetry Breaking, Phys. Rev. D 75 (2007) 045022 [hep-ph/0612139] [INSPIRE].

    ADS  Google Scholar 

  7. H. Murayama and Y. Nomura, Gauge Mediation Simplified, Phys. Rev. Lett. 98 (2007) 151803 [hep-ph/0612186] [INSPIRE].

    Article  ADS  Google Scholar 

  8. C. Csáki, Y. Shirman and J. Terning, A Simple Model of Low-scale Direct Gauge Mediation, JHEP 05 (2007) 099 [hep-ph/0612241] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K.A. Intriligator, N. Seiberg and D. Shih, Supersymmetry breaking, R-symmetry breaking and metastable vacua, JHEP 07 (2007) 017 [hep-th/0703281] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Abel, C. Durnford, J. Jaeckel and V.V. Khoze, Dynamical breaking of U(1)(R) and supersymmetry in a metastable vacuum, Phys. Lett. B 661 (2008) 201 [arXiv:0707.2958] [INSPIRE].

    ADS  Google Scholar 

  11. A. Giveon and D. Kutasov, Stable and Metastable Vacua in SQCD, Nucl. Phys. B 796 (2008) 25 [arXiv:0710.0894] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. N. Haba and N. Maru, A Simple Model of Direct Gauge Mediation of Metastable Supersymmetry Breaking, Phys. Rev. D 76 (2007) 115019 [arXiv:0709.2945] [INSPIRE].

    ADS  Google Scholar 

  13. R. Essig, J.-F. Fortin, K. Sinha, G. Torroba and M.J. Strassler, Metastable supersymmetry breaking and multitrace deformations of SQCD, JHEP 03 (2009) 043 [arXiv:0812.3213] [INSPIRE].

    Article  ADS  Google Scholar 

  14. D. Koschade, M. McGarrie and S. Thomas, Direct Mediation and Metastable Supersymmetry Breaking for SO(10), JHEP 02 (2010) 100 [arXiv:0909.0233] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Abel and M. Goodsell, Easy Dirac Gauginos, JHEP 06 (2011) 064 [arXiv:1102.0014] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Franco and A.M. Uranga, Dynamical SUSY breaking at meta-stable minima from D-branes at obstructed geometries, JHEP 06 (2006) 031 [hep-th/0604136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Ooguri and Y. Ookouchi, Landscape of supersymmetry breaking vacua in geometrically realized gauge theories, Nucl. Phys. B 755 (2006) 239 [hep-th/0606061] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Ooguri and Y. Ookouchi, Meta-Stable Supersymmetry Breaking Vacua on Intersecting Branes, Phys. Lett. B 641 (2006) 323 [hep-th/0607183] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. S. Franco, I. Garcia-Etxebarria and A.M. Uranga, Non-supersymmetric meta-stable vacua from brane configurations, JHEP 01 (2007) 085 [hep-th/0607218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Bena, E. Gorbatov, S. Hellerman, N. Seiberg and D. Shih, A Note on (Meta)stable Brane Configurations in MQCD, JHEP 11 (2006) 088 [hep-th/0608157] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. R. Argurio, M. Bertolini, S. Franco and S. Kachru, Gauge/gravity duality and meta-stable dynamical supersymmetry breaking, JHEP 01 (2007) 083 [hep-th/0610212] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Aganagic, C. Beem, J. Seo and C. Vafa, Geometrically Induced Metastability and Holography, Nucl. Phys. B 789 (2008) 382 [hep-th/0610249] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Giveon and D. Kutasov, Gauge Symmetry and Supersymmetry Breaking From Intersecting Branes, Nucl. Phys. B 778 (2007) 129 [hep-th/0703135] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. R. Argurio, M. Bertolini, S. Franco and S. Kachru, Meta-stable vacua and D-branes at the conifold, JHEP 06 (2007) 017 [hep-th/0703236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. T. Kawano, H. Ooguri and Y. Ookouchi, Gauge Mediation in String Theory, Phys. Lett. B 652 (2007) 40 [arXiv:0704.1085] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. M. Buican, D. Malyshev and H. Verlinde, On the geometry of metastable supersymmetry breaking, JHEP 06 (2008) 108 [arXiv:0710.5519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Krippendorf and F. Quevedo, Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation, JHEP 11 (2009) 039 [arXiv:0901.0683] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Giecold, E. Goi and F. Orsi, Assessing a candidate IIA dual to metastable supersymmetry-breaking, JHEP 02 (2012) 019 [arXiv:1108.1789] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. O. DeWolfe, S. Kachru and M. Mulligan, A Gravity Dual of Metastable Dynamical Supersymmetry Breaking, Phys. Rev. D 77 (2008) 065011 [arXiv:0801.1520] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Dymarsky, On gravity dual of a metastable vacuum in Klebanov-Strassler theory, JHEP 05 (2011) 053 [arXiv:1102.1734] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. H. Ooguri, Y. Ookouchi and C.-S. Park, Metastable Vacua in Perturbed Seiberg-Witten Theories, Adv. Theor. Math. Phys. 12 (2008) 405 [arXiv:0704.3613] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  33. G. Pastras, Non supersymmetric metastable vacua in N = 2 SYM softly broken to N = 1, arXiv:0705.0505 [INSPIRE].

  34. J. Marsano, H. Ooguri, Y. Ookouchi and C.-S. Park, Metastable Vacua in Perturbed Seiberg-Witten Theories. Part 2. Fayet-Iliopoulos Terms and Kähler Normal Coordinates, Nucl. Phys. B 798 (2008) 17 [arXiv:0712.3305] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. J. Marsano, K. Papadodimas and M. Shigemori, Nonsupersymmetric Brane/Antibrane Configurations in Type IIA and M-theory, Nucl. Phys. B 789 (2008) 294 [arXiv:0705.0983] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. L. Mazzucato, Y. Oz and S. Yankielowicz, Supersymmetry breaking vacua from M-theory fivebranes, JHEP 11 (2007) 094 [arXiv:0709.2491] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Marsano, K. Papadodimas and M. Shigemori, Off-shell M5 Brane, Perturbed Seiberg-Witten Theory and Metastable Vacua, Nucl. Phys. B 804 (2008) 19 [arXiv:0801.2154] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. L. Hollands, J. Marsano, K. Papadodimas and M. Shigemori, Nonsupersymmetric Flux Vacua and Perturbed N = 2 Systems, JHEP 10 (2008) 102 [arXiv:0804.4006] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. S.A. Abel, C.-S. Chu, J. Jaeckel and V.V. Khoze, SUSY breaking by a metastable ground state: Why the early universe preferred the non-supersymmetric vacuum, JHEP 01 (2007) 089 [hep-th/0610334] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. N.J. Craig, P.J. Fox and J.G. Wacker, Reheating Metastable ORaifeartaigh Models, Phys. Rev. D 75 (2007) 085006 [hep-th/0611006] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. W. Fischler, V. Kaplunovsky, C. Krishnan, L. Mannelli and M.A. Torres, Meta-Stable Supersymmetry Breaking in a Cooling Universe, JHEP 03 (2007) 107 [hep-th/0611018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. S.A. Abel, J. Jaeckel and V.V. Khoze, Why the early universe preferred the non-supersymmetric vacuum: Part II, JHEP 01 (2007) 015 [hep-th/0611130] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. V.S. Kaplunovsky, Metastable Supersymmetry Breaking in a Cooling Universe, AIP Conf. Proc. 957 (2007) 99 [arXiv:0711.0031] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. Kutasov, O. Lunin, J. McOrist and A.B. Royston, Dynamical Vacuum Selection in String Theory, Nucl. Phys. B 833 (2010) 64 [arXiv:0909.3319] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE].

  46. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. I. Krichever and D. Phong, On the integrable geometry of soliton equations and N = 2 supersymmetric gauge theories, J. Diff. Geom. 45 (1997) 349 [hep-th/9604199] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  49. S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  50. M.J. Duncan and L.G. Jensen, Exact tunneling solutions in scalar field theory, Phys. Lett. B 291 (1992) 109 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Pastras.

Additional information

ArXiv ePrint: 0811.3393

When this work was completed, the affiliation of both authors was Harvard University, Physics Department, Cambridge MA, U.S.A. (Eleni Katifori and Georgios Pastras)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katifori, E., Pastras, G. Thermal evolution of the non-supersymmetric metastable vacua in \( \mathcal{N}=2 \) SU(2) SYM softly broken to \( \mathcal{N}=1 \) . J. High Energ. Phys. 2013, 142 (2013). https://doi.org/10.1007/JHEP05(2013)142

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)142

Keywords

Navigation