Advertisement

Thermal evolution of the non-supersymmetric metastable vacua in \( \mathcal{N}=2 \) SU(2) SYM softly broken to \( \mathcal{N}=1 \)

  • Eleni Katifori
  • Georgios PastrasEmail author
Article

Abstract

It has been shown that four dimensional \( \mathcal{N}=2 \) gauge theories, softly broken to \( \mathcal{N}=1 \) by a superpotential term, can accommodate metastable non-supersymmetric vacua in their moduli space. We study the SU(2) theory at high temperatures in order to determine whether a cooling universe settles in the metastable vacuum at zero temperature. We show that the corrections to the free energy because of the BPS dyons are such that may destroy the existence of the metastable vacuum at high temperatures. Nevertheless we demonstrate the universe can settle in the metastable vacuum, provided that the following two conditions are hold: first the superpotential term is not arbitrarily small in comparison to the strong coupling scale of the gauge theory, and second the metastable vacuum lies in the strongly coupled region of the moduli space.

Keywords

Supersymmetry Breaking Extended Supersymmetry 

References

  1. [1]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    R. Kitano, Dynamical GUT breaking and mu-term driven supersymmetry breaking, Phys. Rev. D 74 (2006) 115002 [hep-ph/0606129] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    T. Banks, Remodeling the Pentagon After the Events of 2/23/06, hep-ph/0606313 [INSPIRE].
  4. [4]
    M. Schmaltz and R. Sundrum, Conformal Sequestering Simplified, JHEP 11 (2006) 011 [hep-th/0608051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Dine and J. Mason, Gauge mediation in metastable vacua, Phys. Rev. D 77 (2008) 016005 [hep-ph/0611312] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R. Kitano, H. Ooguri and Y. Ookouchi, Direct Mediation of Meta-Stable Supersymmetry Breaking, Phys. Rev. D 75 (2007) 045022 [hep-ph/0612139] [INSPIRE].ADSGoogle Scholar
  7. [7]
    H. Murayama and Y. Nomura, Gauge Mediation Simplified, Phys. Rev. Lett. 98 (2007) 151803 [hep-ph/0612186] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. Csáki, Y. Shirman and J. Terning, A Simple Model of Low-scale Direct Gauge Mediation, JHEP 05 (2007) 099 [hep-ph/0612241] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K.A. Intriligator, N. Seiberg and D. Shih, Supersymmetry breaking, R-symmetry breaking and metastable vacua, JHEP 07 (2007) 017 [hep-th/0703281] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Abel, C. Durnford, J. Jaeckel and V.V. Khoze, Dynamical breaking of U(1)(R) and supersymmetry in a metastable vacuum, Phys. Lett. B 661 (2008) 201 [arXiv:0707.2958] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Giveon and D. Kutasov, Stable and Metastable Vacua in SQCD, Nucl. Phys. B 796 (2008) 25 [arXiv:0710.0894] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Haba and N. Maru, A Simple Model of Direct Gauge Mediation of Metastable Supersymmetry Breaking, Phys. Rev. D 76 (2007) 115019 [arXiv:0709.2945] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Essig, J.-F. Fortin, K. Sinha, G. Torroba and M.J. Strassler, Metastable supersymmetry breaking and multitrace deformations of SQCD, JHEP 03 (2009) 043 [arXiv:0812.3213] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Koschade, M. McGarrie and S. Thomas, Direct Mediation and Metastable Supersymmetry Breaking for SO(10), JHEP 02 (2010) 100 [arXiv:0909.0233] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Abel and M. Goodsell, Easy Dirac Gauginos, JHEP 06 (2011) 064 [arXiv:1102.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Franco and A.M. Uranga, Dynamical SUSY breaking at meta-stable minima from D-branes at obstructed geometries, JHEP 06 (2006) 031 [hep-th/0604136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    H. Ooguri and Y. Ookouchi, Landscape of supersymmetry breaking vacua in geometrically realized gauge theories, Nucl. Phys. B 755 (2006) 239 [hep-th/0606061] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    H. Ooguri and Y. Ookouchi, Meta-Stable Supersymmetry Breaking Vacua on Intersecting Branes, Phys. Lett. B 641 (2006) 323 [hep-th/0607183] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    S. Franco, I. Garcia-Etxebarria and A.M. Uranga, Non-supersymmetric meta-stable vacua from brane configurations, JHEP 01 (2007) 085 [hep-th/0607218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    I. Bena, E. Gorbatov, S. Hellerman, N. Seiberg and D. Shih, A Note on (Meta)stable Brane Configurations in MQCD, JHEP 11 (2006) 088 [hep-th/0608157] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    R. Argurio, M. Bertolini, S. Franco and S. Kachru, Gauge/gravity duality and meta-stable dynamical supersymmetry breaking, JHEP 01 (2007) 083 [hep-th/0610212] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    M. Aganagic, C. Beem, J. Seo and C. Vafa, Geometrically Induced Metastability and Holography, Nucl. Phys. B 789 (2008) 382 [hep-th/0610249] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A. Giveon and D. Kutasov, Gauge Symmetry and Supersymmetry Breaking From Intersecting Branes, Nucl. Phys. B 778 (2007) 129 [hep-th/0703135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    R. Argurio, M. Bertolini, S. Franco and S. Kachru, Meta-stable vacua and D-branes at the conifold, JHEP 06 (2007) 017 [hep-th/0703236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    T. Kawano, H. Ooguri and Y. Ookouchi, Gauge Mediation in String Theory, Phys. Lett. B 652 (2007) 40 [arXiv:0704.1085] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    M. Buican, D. Malyshev and H. Verlinde, On the geometry of metastable supersymmetry breaking, JHEP 06 (2008) 108 [arXiv:0710.5519] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Krippendorf and F. Quevedo, Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation, JHEP 11 (2009) 039 [arXiv:0901.0683] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Giecold, E. Goi and F. Orsi, Assessing a candidate IIA dual to metastable supersymmetry-breaking, JHEP 02 (2012) 019 [arXiv:1108.1789] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    O. DeWolfe, S. Kachru and M. Mulligan, A Gravity Dual of Metastable Dynamical Supersymmetry Breaking, Phys. Rev. D 77 (2008) 065011 [arXiv:0801.1520] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Dymarsky, On gravity dual of a metastable vacuum in Klebanov-Strassler theory, JHEP 05 (2011) 053 [arXiv:1102.1734] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    H. Ooguri, Y. Ookouchi and C.-S. Park, Metastable Vacua in Perturbed Seiberg-Witten Theories, Adv. Theor. Math. Phys. 12 (2008) 405 [arXiv:0704.3613] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  33. [33]
    G. Pastras, Non supersymmetric metastable vacua in N = 2 SYM softly broken to N = 1, arXiv:0705.0505 [INSPIRE].
  34. [34]
    J. Marsano, H. Ooguri, Y. Ookouchi and C.-S. Park, Metastable Vacua in Perturbed Seiberg-Witten Theories. Part 2. Fayet-Iliopoulos Terms and Kähler Normal Coordinates, Nucl. Phys. B 798 (2008) 17 [arXiv:0712.3305] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    J. Marsano, K. Papadodimas and M. Shigemori, Nonsupersymmetric Brane/Antibrane Configurations in Type IIA and M-theory, Nucl. Phys. B 789 (2008) 294 [arXiv:0705.0983] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    L. Mazzucato, Y. Oz and S. Yankielowicz, Supersymmetry breaking vacua from M-theory fivebranes, JHEP 11 (2007) 094 [arXiv:0709.2491] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    J. Marsano, K. Papadodimas and M. Shigemori, Off-shell M5 Brane, Perturbed Seiberg-Witten Theory and Metastable Vacua, Nucl. Phys. B 804 (2008) 19 [arXiv:0801.2154] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    L. Hollands, J. Marsano, K. Papadodimas and M. Shigemori, Nonsupersymmetric Flux Vacua and Perturbed N = 2 Systems, JHEP 10 (2008) 102 [arXiv:0804.4006] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S.A. Abel, C.-S. Chu, J. Jaeckel and V.V. Khoze, SUSY breaking by a metastable ground state: Why the early universe preferred the non-supersymmetric vacuum, JHEP 01 (2007) 089 [hep-th/0610334] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    N.J. Craig, P.J. Fox and J.G. Wacker, Reheating Metastable ORaifeartaigh Models, Phys. Rev. D 75 (2007) 085006 [hep-th/0611006] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    W. Fischler, V. Kaplunovsky, C. Krishnan, L. Mannelli and M.A. Torres, Meta-Stable Supersymmetry Breaking in a Cooling Universe, JHEP 03 (2007) 107 [hep-th/0611018] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    S.A. Abel, J. Jaeckel and V.V. Khoze, Why the early universe preferred the non-supersymmetric vacuum: Part II, JHEP 01 (2007) 015 [hep-th/0611130] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    V.S. Kaplunovsky, Metastable Supersymmetry Breaking in a Cooling Universe, AIP Conf. Proc. 957 (2007) 99 [arXiv:0711.0031] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D. Kutasov, O. Lunin, J. McOrist and A.B. Royston, Dynamical Vacuum Selection in String Theory, Nucl. Phys. B 833 (2010) 64 [arXiv:0909.3319] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE].
  46. [46]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    I. Krichever and D. Phong, On the integrable geometry of soliton equations and N = 2 supersymmetric gauge theories, J. Diff. Geom. 45 (1997) 349 [hep-th/9604199] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  49. [49]
    S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  50. [50]
    M.J. Duncan and L.G. Jensen, Exact tunneling solutions in scalar field theory, Phys. Lett. B 291 (1992) 109 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Max Planck Institute for Dynamics and SelforganizationGöttingenGermany
  2. 2.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations