Tensionless strings and Galilean Conformal Algebra

  • Arjun BagchiEmail author


We discuss an intriguing link between the symmetries of the tensionless limit of closed string theory and the 2-dimensional Galilean Conformal Algebra (2d GCA). 2d GCA has been studied in the context of the non-relativistic limit of AdS/CFT and more recently in flat-space holography as the proposed symmetry algebra of the field theory dual to 3d Minkowski spacetimes. It is best understood as a contraction of two copies of the Virasoro algebra. In this note, we link this to the tensionless limit of bosonic closed string theory showing how it emerges naturally as a contraction of the residual gauge symmetries of the tensile string in the conformal gauge. We also discuss a possible “dual” interpretation in terms of a point-particle like limit. We show that this different contraction, motivated by an exchange of world-sheet space and time co-ordinates, leads to the same symmetry algebra and provide further evidence in support of our claim by looking at the theory on a torus.


Bosonic Strings Conformal and W Symmetry Gauge-gravity correspondence 


  1. [1]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, New York, U.S.A. (1997).zbMATHCrossRefGoogle Scholar
  2. [2]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  3. [3]
    A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    V.N. Gusyatnikova and V.A. Yumaguzhin, Symmetries and conservation laws of navier-stokes equations, Acta Applicandae Mathematicae 15 (1989) 65.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    A. Bagchi, R. Gopakumar, I. Mandal and A. Miwa, GCA in 2d, JHEP 08 (2010) 004 [arXiv:0912.1090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    H. Bondi, M. van der Burg and A. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].ADSGoogle Scholar
  8. [8]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Bagchi, The BMS/GCA correspondence, Phys. Rev. Lett. 105 (2010) 171601 [arXiv:1006.3354] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Bagchi and R. Fareghbal, BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries, JHEP 10 (2012) 092 [arXiv:1203.5795] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Barnich, A. Gomberoff and H.A. Gonzalez, The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev. D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Bagchi, S. Detournay and D. Grumiller, Flat-Space Chiral Gravity, Phys. Rev. Lett. 109 (2012) 151301 [arXiv:1208.1658] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Bagchi, S. Detournay, R. Fareghbal and J. Simon, Holography of 3d Flat Cosmological Horizons, Phys. Rev. Lett. 110 (2013) 141302 [arXiv:1208.4372] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 10 (2012) 095 [arXiv:1208.4371] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Barnich, A. Gomberoff and H.A. Gonzalez, BMS 3 invariant two dimensional field theories as flat limit of Liouville, arXiv:1210.0731 [INSPIRE].
  17. [17]
    J. Isberg, U. Lindström, B. Sundborg and G. Theodoridis, Classical and quantized tensionless strings, Nucl. Phys. B 411 (1994) 122 [hep-th/9307108] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Schild, Classical Null Strings, Phys. Rev. D 16 (1977) 1722 [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Karlhede and U. Lindström, The classical bosonic string in the zero tension limit, Class. Quant. Grav. 3 (1986) L73 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  23. [23]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  24. [24]
    E. Witten, Spacetime Reconstruction in JHS/60: Conf. in Honor of John Schwarzos 60 th Birthday, California Institute of Technology, Pasadena, CA, U.S.A., 3-4 Nov. 2001;
  25. [25]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, arXiv:1207.6697 [INSPIRE].
  27. [27]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    F. Lizzi, B. Rai, G. Sparano and A. Srivastava, Quantization of the null string and absence of critical dimensions, Phys. Lett. B 182 (1986) 326 [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    A. Bagchi, Topologically Massive Gravity and Galilean Conformal Algebra: A Study of Correlation Functions, JHEP 02 (2011) 091 [arXiv:1012.3316] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, San Francisco (1973) pg. 1279.Google Scholar
  31. [31]
    D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem : Fluid/Gravity on cut-off surfaces, JHEP 12 (2011) 090 [arXiv:1106.2577] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Bagchi and I. Mandal, On Representations and Correlation Functions of Galilean Conformal Algebras, Phys. Lett. B 675 (2009) 393 [arXiv:0903.4524] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    K. Hotta, T. Kubota and T. Nishinaka, Galilean Conformal Algebra in Two Dimensions and Cosmological Topologically Massive Gravity, Nucl. Phys. B 838 (2010) 358 [arXiv:1003.1203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  35. [35]
    D. Kutasov and N. Seiberg, More comments on string theory on AdS 3, JHEP 04 (1999) 008 [hep-th/9903219] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    G. Bonelli, On the tensionless limit of bosonic strings, infinite symmetries and higher spins, Nucl. Phys. B 669 (2003) 159 [hep-th/0305155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A. Bagchi and I. Mandal, Supersymmetric Extension of Galilean Conformal Algebras, Phys. Rev. D 80 (2009) 086011 [arXiv:0905.0580] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    I. Mandal, Supersymmetric Extension of GCA in 2d, JHEP 11 (2010) 018 [arXiv:1003.0209] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Clark, A. Karch, P. Kovtun and D. Yamada, Construction of bosonic string theory on infinitely curved anti-de Sitter space, Phys. Rev. D 68 (2003) 066011 [hep-th/0304107] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    P. de Medeiros and S.P. Kumar, Space-time Virasoro algebra from strings on zero radius AdS 3, JHEP 12 (2003) 043 [hep-th/0310040] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    U. Lindström and M. Zabzine, Tensionless strings, WZW models at critical level and massless higher spin fields, Phys. Lett. B 584 (2004) 178 [hep-th/0305098] [INSPIRE].ADSGoogle Scholar
  43. [43]
    I. Bakas and C. Sourdis, On the tensionless limit of gauged WZW models, JHEP 06 (2004) 049 [hep-th/0403165] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Center for Theoretical Physics, Massachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.School of Mathematics and the Maxwell Institute of Mathematical SciencesUniversity of EdinburghEdinburghU.K.

Personalised recommendations