T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett.
107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].
ADS
Article
Google Scholar
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.
2 (1998) 231 [Int. J. Theor. Phys.
38 (1999) 1113] [hep-th/9711200] [INSPIRE].
MathSciNet
ADS
MATH
Google Scholar
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.
96 (2006) 181602 [hep-th/0603001] [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett.
83 (1999) 4690 [hep-th/9906064] [INSPIRE].
MathSciNet
ADS
MATH
Article
Google Scholar
S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev.
D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
ADS
Google Scholar
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.
101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
ADS
Article
Google Scholar
H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev.
D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].
ADS
Google Scholar
M. Fujita, M. Kaminski and A. Karch, SL(2,
\( \mathbb{Z} \)) Action on AdS/BCFT and Hall conductivities, JHEP
07 (2012) 150 [arXiv:1204.0012] [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
R. Laughlin, Quantized Hall conductivity in two-dimensions, Phys. Rev.
B 23 (1981) 5632 [INSPIRE].
ADS
Google Scholar
R. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionallycharged excitations, Phys. Rev. Lett.
50 (1983) 1395 [INSPIRE].
ADS
Article
Google Scholar
J. Jain, Composite fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett.
63 (1989) 199 [INSPIRE].
ADS
Article
Google Scholar
J. Jain, Theory of the fractional quantum Hall effect, Phys. Rev.
B 41 (1990) 7653 [INSPIRE].
ADS
Google Scholar
R.E. Prange and and S.M. Girvin, The quantum Hall effect, 2nd edition, Springer-Verlag, Berlin Germany (1990).
X-G. Wen, Quantum field theory of many-body systems, Oxford University Press, Oxford U.K. (2004).
R. Jackiw, Fractional charge and zero modes for planar systems in a magnetic field, Phys. Rev.
D 29 (1984) 2375 [Erratum ibid.
D 33 (1986) 2500] [INSPIRE].
MathSciNet
ADS
Google Scholar
R. Jackiw, J. Avron, R. Seiler and B. Simon, Quantization of the Hall conductance for general multiparticle Schrödinger hamiltonians, Phys. Rev. Lett.
54 (1985) 259.
MathSciNet
ADS
Article
Google Scholar
G.W. Semenoff and P. Sodano, Nonabelian adiabatic phases and the fractional quantum Hall effect, Phys. Rev. Lett.
57 (1986) 1195 [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
G.W. Semenoff, P. Sodano and Y.-S. Wu, Renormalization of the statistics parameter in three-dimensional electrodynamics, Phys. Rev. Lett.
62 (1989) 715 [INSPIRE].
ADS
Article
Google Scholar
A.P. Polychronakos, Topological mass quantization and parity violation in (2 + 1)-dimensional QED, Nucl. Phys.
B 281 (1987) 241 [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
A.P. Polychronakos, On the quantization of the coefficient of the abelian Chern-Simons term, Phys. Lett.
B 241 (1990) 37 [INSPIRE].
MathSciNet
ADS
Google Scholar
N. Bralic, C. Fosco and F. Schaposnik, On the quantization of the Abelian Chern-Simons coefficient at finite temperature, Phys. Lett.
B 383 (1996) 199 [hep-th/9509110] [INSPIRE].
ADS
Google Scholar
C.L. Kane and M.P.A. Fisher, Quantized thermal transport in the fractional quantum Hall effect, Phys. Rev.
B 55 (1997) 15832 [cond-mat/9603118].
ADS
Google Scholar
B.I. Halperin, Quantized Hall conductance, current carrying edge states and the existence of extended states in a two-dimensional disordered potential, Phys. Rev.
B 25 (1982) 2185 [INSPIRE].
MathSciNet
ADS
Google Scholar
S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev.
D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].
ADS
Google Scholar
S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev.
B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].
ADS
Google Scholar
J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP
11 (2008) 020 [arXiv:0809.1876] [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy, JHEP
06 (2009) 066 [arXiv:0901.0924] [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP
10 (2010) 063 [arXiv:1003.4965] [INSPIRE].
ADS
Article
Google Scholar
O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in Anti-de Sitter space, JHEP
02 (2011) 041 [arXiv:1011.6144] [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
M. Nozaki, T. Takayanagi and T. Ugajin, Central charges for BCFTs and holography, JHEP
06 (2012) 066 [arXiv:1205.1573] [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP
11 (2011) 043 [arXiv:1108.5152] [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP
07 (1998) 023 [hep-th/9806087] [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
G. Hayward, Gravitational action for space-times with nonsmooth boundaries, Phys. Rev.
D 47 (1993) 3275 [INSPIRE].
MathSciNet
ADS
Google Scholar
S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.
B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
MathSciNet
ADS
Google Scholar
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.
2 (1998) 253 [hep-th/9802150] [INSPIRE].
MathSciNet
ADS
MATH
Google Scholar
D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP
09 (2002) 042 [hep-th/0205051] [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
C. Herzog and D. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP
03 (2003) 046 [hep-th/0212072] [INSPIRE].
MathSciNet
ADS
Article
Google Scholar
N.R. Cooper, B. I. Halperin and I.M. Ruzin, Thermoelectric response of an interacting two-dimensional electron gas in a quantizing magnetic field, Phys. Rev.
B 55 (1997) 2344 [cond-mat/9607001].
ADS
Google Scholar
T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS
2, Phys. Rev.
D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].
ADS
Google Scholar
O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP
10 (2011) 034 [arXiv:1106.3883] [INSPIRE].
ADS
Article
Google Scholar
D.B. Chklovskii, B.I. Shklovskii and L.I. Glazman, Electrostatics of edge channels, Phys. Rev.
B 46 (1992) 4026.
ADS
Google Scholar
N.B. Zhitenev, R.J. Haug, K. von Klitzing and K. Eberl, Time-resolved measurements of transport in edge channels, Phys. Rev. Lett.
71 (1993) 2292.
ADS
Article
Google Scholar
S.W. Hwang, D.C. Tsui and M. Shayegan, Experimental evidence for finite-width edge channels in integer and fractional quantum Hall effects, Phys. Rev.
B 48 (1993) 8161.
ADS
Google Scholar
A.H. MacDonald, Edge states in the fractional-quantum-Hall-effect regime, Phys. Rev. Lett.
64 (1990) 220 [INSPIRE].
ADS
Article
Google Scholar
X.G. Wen, Gapless boundary excitations in the quantum Hall states and in the chiral spin states, Phys. Rev.
B 43 (1991) 11025 [INSPIRE].
ADS
Google Scholar
X.G. Wen, Electrodynamical properties of gapless edge excitations in the fractional quantum Hall states, Phys. Rev. Lett.
64 (1990) 2206 [INSPIRE].
ADS
Article
Google Scholar
X.G. Wen, Edge transport properties of the fractional quantum Hall states and weak-impurity scattering of a one-dimensional charge-density wave, Phys. Rev.
B 44 (1991) 5708.
ADS
Google Scholar
M.D. Johnson and A.H. MacDonald, Composite edges in the ν = 2/3 fractional quantum Hall effect, Phys. Rev. Lett.
67 (1991) 2060.
ADS
Article
Google Scholar
V. Venkatachalam, S. Hart, L. Pfeiffer, K. West and A. Yacoby, Local thermometry of neutral modes on the quantum Hall edge, Nat. Phys.
8 (2012) 676 [arXiv:1202.6681].
Article
Google Scholar
D. Melnikov, E. Orazi and P. Sodano, On the stability of the black hole solutions in AdS/BCFT models, to appear.