Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Sterile neutrino oscillations: the global picture
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Testing sterile neutrino mixing with present and future solar neutrino data

05 February 2022

Kim Goldhagen, Michele Maltoni, … Thomas Schwetz

Sterile neutrinos with altered dispersion relations as an explanation for neutrino anomalies

28 December 2020

Dominik Döring, Heinrich Päs, … Thomas J. Weiler

Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos

03 August 2018

Mona Dentler, Álvaro Hernández-Cabezudo, … Thomas Schwetz

Direct comparison of sterile neutrino constraints from cosmological data, $$\nu _{e}$$νe disappearance data and $$\nu _{\mu } \rightarrow \nu _{e} $$νμ→νe appearance data in a $$3+1$$3+1 model

19 August 2020

Matthew Adams, Fedor Bezrukov, … Stefan Söldner-Rembold

Constraining super-light sterile neutrinos at Borexino and KamLAND

01 September 2022

Zikang Chen, Jiajun Liao, … Baobiao Yue

A short travel for neutrinos in Large Extra Dimensions

23 November 2018

G. V. Stenico, D. V. Forero & O. L. G. Peres

Type-I seesaw with eV-scale neutrinos

23 July 2020

G. C. Branco, J. T. Penedo, … J. I. Silva-Marcos

On the decaying-sterile-neutrino solution to the electron (anti)neutrino appearance anomalies

21 July 2020

André de Gouvêa, O. L. G. Peres, … G. V. Stenico

Sterile neutrinos: propagation in matter and sensitivity to sterile mass ordering

03 February 2023

Dibya S. Chattopadhyay, Moon Moon Devi, … Sushant K. Raut

Download PDF
  • Open Access
  • Published: 10 May 2013

Sterile neutrino oscillations: the global picture

  • Joachim Kopp1,
  • Pedro A. N. Machado2,3,
  • Michele Maltoni4 &
  • …
  • Thomas Schwetz1 

Journal of High Energy Physics volume 2013, Article number: 50 (2013) Cite this article

  • 1927 Accesses

  • 333 Citations

  • 16 Altmetric

  • Metrics details

Abstract

Neutrino oscillations involving eV-scale neutrino mass states are investigated in the context of global neutrino oscillation data including short and long-baseline accelerator, reactor, and radioactive source experiments, as well as atmospheric and solar neutrinos. We consider sterile neutrino mass schemes involving one or two mass-squared differences at the eV2 scale denoted by 3+1, 3+2, and 1+3+1. We discuss the hints for eV-scale neutrinos from \( \mathop{{{v_e}}}\limits^{{\left( - \right)}} \) disappearance (reactor and Gallium anomalies) and \( \mathop{{{v_{\mu }}}}\limits^{{\left( - \right)}}\to \mathop{{{v_e}}}\limits^{{\left( - \right)}} \) appearance (LSND and MiniBooNE) searches, and we present constraints on sterile neutrino mixing from \( \mathop{{{v_{\mu }}}}\limits^{{\left( - \right)}} \) and neutral-current disappearance data. An explanation of all hints in terms of oscillations suffers from severe tension between appearance and disappearance data. The best compatibility is obtained in the 1+3+1 scheme with a p-value of 0.2% and exceedingly worse compatibilities in the 3+1 and 3+2 schemes.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

    Article  ADS  Google Scholar 

  2. SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

    Article  ADS  Google Scholar 

  3. KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].

    Article  ADS  Google Scholar 

  4. MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [INSPIRE].

    Article  ADS  Google Scholar 

  5. T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  6. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  7. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  8. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  9. RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  10. Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].

    ADS  Google Scholar 

  11. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    Article  ADS  Google Scholar 

  12. LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \( {{\overline{\nu}}_e} \) appearance in a \( {{\overline{\nu}}_{\mu }} \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

    ADS  Google Scholar 

  13. MiniBooNE collaboration, A. Aguilar-Arevalo et al., A Search for electron neutrino appearance at the Δm 2 ∼ 1 eV 2 scale, Phys. Rev. Lett. 98 (2007) 231801 [arXiv:0704.1500] [INSPIRE].

    Article  ADS  Google Scholar 

  14. MiniBooNE collaboration, A. Aguilar-Arevalo et al., Event Excess in the MiniBooNE Search for \( {{\overline{\nu}}_{\mu }}\to {{\overline{\nu}}_e} \) Oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C. Polly, Results from MiniBooNE, talk given at Neutrino2012, Kyoto, Japan, 3–9 June 2012.

  16. MiniBooNE collaboration, A. Aguilar-Arevalo et al., A Combined νμ → νe and \( {{\overline{\nu}}_{\mu }}\to {{\overline{\nu}}_e} \) Oscillation Analysis of the MiniBooNE Excesses, arXiv:1207.4809 [INSPIRE].

  17. MiniBooNE collaboration, A. Aguilar-Arevalo et al., Improved Search for \( {{\overline{\nu}}_{\mu }}\to {{\overline{\nu}}_e} \) Oscillations in the MiniBooNE Experiment, arXiv:1303.2588 [INSPIRE].

  18. M.A. Acero, C. Giunti and M. Laveder, Limits on νe and \( {{\overline{\nu}}_e} \) disappearance from Gallium and reactor experiments, Phys. Rev. D 78 (2008) 073009 [arXiv:0711.4222] [INSPIRE].

    ADS  Google Scholar 

  19. C. Giunti and M. Laveder, Statistical Significance of the Gallium Anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].

    ADS  Google Scholar 

  20. T. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].

    ADS  Google Scholar 

  21. P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].

    ADS  Google Scholar 

  22. K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, Determination of the anti-neutrino spectrum from U-235 thermal neutron fission products up to 9.5 MeV, Phys. Lett. B 160 (1985) 325 [INSPIRE].

    ADS  Google Scholar 

  23. A. Hahn et al., Anti-neutrino spectra from PU-241 and PU-239 thermal neutron fission products, Phys. Lett. B 218 (1989) 365 [INSPIRE].

    ADS  Google Scholar 

  24. F. Von Feilitzsch, A. Hahn and K. Schreckenbach, Experimental beta spectra from PU-239 and U-235 thermal neutron fission products and their correlated anti-neutrinos spectra, Phys. Lett. B 118 (1982) 162 [INSPIRE].

    ADS  Google Scholar 

  25. P. Vogel, G. Schenter, F. Mann and R. Schenter, Reactor anti-neutrino spectra and their application to anti-neutrino induced reactions. 2, Phys. Rev. C 24 (1981) 1543 [INSPIRE].

    ADS  Google Scholar 

  26. G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].

    ADS  Google Scholar 

  27. J. Gomez-Cadenas and M. Gonzalez-Garcia, Future tau-neutrino oscillation experiments and present data, Z. Phys. C 71 (1996) 443 [hep-ph/9504246] [INSPIRE].

    ADS  Google Scholar 

  28. S. Goswami, Accelerator, reactor, solar and atmospheric neutrino oscillation: beyond three generations, Phys. Rev. D 55 (1997) 2931 [hep-ph/9507212] [INSPIRE].

    ADS  Google Scholar 

  29. S.M. Bilenky, C. Giunti and W. Grimus, Neutrino mass spectrum from the results of neutrino oscillation experiments, Eur. Phys. J. C 1 (1998) 247 [hep-ph/9607372] [INSPIRE].

    ADS  Google Scholar 

  30. N. Okada and O. Yasuda, A Sterile neutrino scenario constrained by experiments and cosmology, Int. J. Mod. Phys. A 12 (1997) 3669 [hep-ph/9606411] [INSPIRE].

    ADS  Google Scholar 

  31. O. Peres and A.Y. Smirnov, (3 + 1) spectrum of neutrino masses: a Chance for LSND?, Nucl. Phys. B 599 (2001) 3 [hep-ph/0011054] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Sorel, J.M. Conrad and M. Shaevitz, A Combined analysis of short baseline neutrino experiments in the (3 + 1) and (3 + 2) sterile neutrino oscillation hypotheses, Phys. Rev. D 70 (2004) 073004 [hep-ph/0305255] [INSPIRE].

    ADS  Google Scholar 

  33. M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, Phys. Rev. D 76 (2007) 093005 [arXiv:0705.0107] [INSPIRE].

    ADS  Google Scholar 

  34. J. Conrad, C. Ignarra, G. Karagiorgi, M. Shaevitz and J. Spitz, Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements, Adv. High Energy Phys. 2013 (2013) 163897 [arXiv:1207.4765] [INSPIRE].

    Google Scholar 

  35. M. Maltoni, T. Schwetz, M. Tortola and J. Valle, Ruling out four neutrino oscillation interpretations of the LSND anomaly?, Nucl. Phys. B 643 (2002) 321 [hep-ph/0207157] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Strumia, Interpreting the LSND anomaly: sterile neutrinos or CPT violation or. . . ?, Phys. Lett. B 539 (2002) 91 [hep-ph/0201134] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Cirelli, G. Marandella, A. Strumia and F. Vissani, Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments, Nucl. Phys. B 708 (2005) 215 [hep-ph/0403158] [INSPIRE].

    Article  ADS  Google Scholar 

  38. K. Abazajian et al., Light Sterile Neutrinos: a White Paper, arXiv:1204.5379 [INSPIRE].

  39. J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].

    Article  ADS  Google Scholar 

  40. L. Borodovsky et al., Search for muon-neutrino oscillations muon-neutrino to electron-neutrino \( {\nu_{\mu }}\to {\nu_e}\left( {{{\overline{\nu}}_{\mu }}\to {{\overline{\nu}}_e}} \right) \) in a wide band neutrino beam, Phys. Rev. Lett. 68 (1992) 274 [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Antonello et al., Experimental search for the LSND anomaly with the ICARUS LAr TPC detector in the CNGS beam, Eur. Phys. J. C 73 (2013) 2345 [arXiv:1209.0122] [INSPIRE].

    ADS  Google Scholar 

  42. MINOS collaboration, P. Adamson et al., Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev. D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].

    ADS  Google Scholar 

  43. MINOS collaboration, P. Adamson et al., Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, Phys. Rev. Lett. 107 (2011) 011802 [arXiv:1104.3922] [INSPIRE].

    Article  ADS  Google Scholar 

  44. MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., A Search for muon neutrino and antineutrino disappearance in MiniBooNE, Phys. Rev. Lett. 103 (2009) 061802 [arXiv:0903.2465] [INSPIRE].

    Article  ADS  Google Scholar 

  45. MiniBooNE Collaboration, SciBooNE collaboration, G. Cheng et al., Dual baseline search for muon antineutrino disappearance at 0.1eV2 < Δm 2 < 100eV2, Phys. Rev. D 86 (2012) 052009 [arXiv:1208.0322] [INSPIRE].

    ADS  Google Scholar 

  46. C. Giunti and M. Laveder, Status of 3 + 1 Neutrino Mixing, Phys. Rev. D 84 (2011) 093006 [arXiv:1109.4033] [INSPIRE].

    ADS  Google Scholar 

  47. M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, Sterile Neutrinos: cosmology vs Short-BaseLine Experiments, arXiv:1302.6720 [INSPIRE].

  48. Y. Li and S.-S. Liu, Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos, Phys. Lett. B 706 (2012) 406 [arXiv:1110.5795] [INSPIRE].

    ADS  Google Scholar 

  49. J. Barry, W. Rodejohann and H. Zhang, Light Sterile Neutrinos: models and Phenomenology, JHEP 07 (2011) 091 [arXiv:1105.3911] [INSPIRE].

    Article  ADS  Google Scholar 

  50. C. Giunti and M. Laveder, Implications of 3 + 1 Short-Baseline Neutrino Oscillations, Phys. Lett. B 706 (2011) 200 [arXiv:1111.1069] [INSPIRE].

    ADS  Google Scholar 

  51. J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].

    Article  ADS  Google Scholar 

  52. E. Giusarma et al., Constraints on massive sterile neutrino species from current and future cosmological data, Phys. Rev. D 83 (2011) 115023 [arXiv:1102.4774] [INSPIRE].

    ADS  Google Scholar 

  53. M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Robust Cosmological Bounds on Neutrinos and their Combination with Oscillation Results, JHEP 08 (2010) 117 [arXiv:1006.3795] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Archidiacono, N. Fornengo, C. Giunti and A. Melchiorri, Testing 3 + 1 and 3 + 2 neutrino mass models with cosmology and short baseline experiments, Phys. Rev. D 86 (2012) 065028 [arXiv:1207.6515] [INSPIRE].

    ADS  Google Scholar 

  55. T.D. Jacques, L.M. Krauss and C. Lunardini, Additional Light Sterile Neutrinos and Cosmology, arXiv:1301.3119 [INSPIRE].

  56. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  57. G. Mangano and P.D. Serpico, A robust upper limit on N eff from BBN, circa 2011, Phys. Lett. B 701 (2011) 296 [arXiv:1103.1261] [INSPIRE].

    ADS  Google Scholar 

  58. J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y. Wong, Sterile neutrinos with eV masses in cosmology: how disfavoured exactly?, JCAP 09 (2011) 034 [arXiv:1108.4136] [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Joudaki, K.N. Abazajian and M. Kaplinghat, Are Light Sterile Neutrinos Preferred or Disfavored by Cosmology?, Phys. Rev. D 87 (2013) 065003 [arXiv:1208.4354] [INSPIRE].

    ADS  Google Scholar 

  60. G. Karagiorgi et al., Leptonic CP-violation studies at MiniBooNE in the (3 + 2) sterile neutrino oscillation hypothesis, Phys. Rev. D 75 (2007) 013011 [Erratum ibid. D 80 (2009) 099902] [hep-ph/0609177] [INSPIRE].

    ADS  Google Scholar 

  61. S. Goswami and W. Rodejohann, MiniBooNE results and neutrino schemes with 2 sterile neutrinos: possible mass orderings and observables related to neutrino masses, JHEP 10 (2007) 073 [arXiv:0706.1462] [INSPIRE].

    Article  ADS  Google Scholar 

  62. M. Blennow and E. Fernandez-Martinez, Parametrization of Seesaw Models and Light Sterile Neutrinos, Phys. Lett. B 704 (2011) 223 [arXiv:1107.3992] [INSPIRE].

    ADS  Google Scholar 

  63. J. Fan and P. Langacker, Light Sterile Neutrinos and Short Baseline Neutrino Oscillation Anomalies, JHEP 04 (2012) 083 [arXiv:1201.6662] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Donini, P. Hernández, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3 + 2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161 [arXiv:1205.5230] [INSPIRE].

    Article  ADS  Google Scholar 

  65. D. Hernandez and A.Y. Smirnov, Active to sterile neutrino oscillations: coherence and MINOS results, Phys. Lett. B 706 (2012) 360 [arXiv:1105.5946] [INSPIRE].

    ADS  Google Scholar 

  66. Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].

    ADS  Google Scholar 

  67. A. Kuvshinnikov, L. Mikaelyan, S. Nikolaev, M. Skorokhvatov and A. Etenko, Measuring the anti-electron-neutrino + p → n + e+ cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor (in Russian), JETP Lett. 54 (1991) 253 [INSPIRE].

    ADS  Google Scholar 

  68. Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].

    ADS  Google Scholar 

  69. CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].

    ADS  Google Scholar 

  70. H. Kwon et al., Search for neutrino oscillations at a fission reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].

    ADS  Google Scholar 

  71. G. Vidyakin et al., Detection of anti-neutrinos in the flux from two reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].

    Google Scholar 

  72. G. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].

    ADS  Google Scholar 

  73. Z. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].

    ADS  Google Scholar 

  74. A. Afonin et al., A study of the reaction \( {{\overline{\nu}}_e}+p\to {e^{+}}+n \) on a nuclear reactor, Sov. Phys. JETP 67 (1988) 213 [INSPIRE].

    Google Scholar 

  75. F. Boehm et al., Final results from the Palo Verde neutrino oscillation experiment, Phys. Rev. D 64 (2001) 112001 [hep-ex/0107009] [INSPIRE].

    ADS  Google Scholar 

  76. CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].

    ADS  Google Scholar 

  77. D. Dwyer, Daya Bay results, talk given at Neutrino2012, Kyoto, Japan, 3–9 June 2012.

  78. KamLAND collaboration, A. Gando et al., Constraints on θ13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].

    ADS  Google Scholar 

  79. W. Grimus and T. Schwetz, Four neutrino mass schemes and the likelihood of (3 + 1) mass spectra, Eur. Phys. J. C 20 (2001) 1 [hep-ph/0102252] [INSPIRE].

    Article  ADS  Google Scholar 

  80. T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].

    Article  ADS  Google Scholar 

  81. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021, 2011 partial update for the 2012 edition [INSPIRE].

  82. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  83. F.E. Wietfeldt and G.L. Greene, Colloquium: the neutron lifetime, Rev. Mod. Phys. 83 (2011) 1173.

    Article  ADS  Google Scholar 

  84. GALLEX collaboration, W. Hampel et al., Final results of the Cr-51 neutrino source experiments in GALLEX, Phys. Lett. B 420 (1998) 114 [INSPIRE].

    ADS  Google Scholar 

  85. F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].

    ADS  Google Scholar 

  86. SAGE collaboration, J. Abdurashitov et al., Measurement of the response of the Russian-American gallium experiment to neutrinos from a Cr-51 source, Phys. Rev. C 59 (1999) 2246 [hep-ph/9803418] [INSPIRE].

    ADS  Google Scholar 

  87. J. Abdurashitov et al., Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source, Phys. Rev. C 73 (2006) 045805 [nucl-ex/0512041] [INSPIRE].

    ADS  Google Scholar 

  88. J.N. Bahcall, Gallium solar neutrino experiments: absorption cross-sections, neutrino spectra and predicted event rates, Phys. Rev. C 56 (1997) 3391 [hep-ph/9710491] [INSPIRE].

    ADS  Google Scholar 

  89. D. Frekers et al., The Ga-71(He-3, t) reaction and the low-energy neutrino response, Phys. Lett. B 706 (2011) 134 [INSPIRE].

    ADS  Google Scholar 

  90. C. Giunti, M. Laveder, Y. Li, Q. Liu and H. Long, Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance, Phys. Rev. D 86 (2012) 113014 [arXiv:1210.5715] [INSPIRE].

    ADS  Google Scholar 

  91. LSND collaboration, L. Auerbach et al., Measurements of charged current reactions of νe on 12-C, Phys. Rev. C 64 (2001) 065501 [hep-ex/0105068] [INSPIRE].

    ADS  Google Scholar 

  92. B. Armbruster et al., KARMEN limits on electron-neutrino to tau-neutrino oscillations in two neutrino and three neutrino mixing schemes, Phys. Rev. C 57 (1998) 3414 [hep-ex/9801007] [INSPIRE].

    ADS  Google Scholar 

  93. M. Fukugita, Y. Kohyama and K. Kubodera, Neutrino reaction cross-sections on C-12 target, Phys. Lett. B 212 (1988) 139 [INSPIRE].

    ADS  Google Scholar 

  94. J. Reichenbacher, Final KARMEN results on neutrino oscillations and neutrino nucleus interactions in the energy regime of supernovae, Ph.D. thesis, Univ. Karlsruhe, Germany.

  95. J. Conrad and M. Shaevitz, Limits on Electron Neutrino Disappearance from the KARMEN and LSND νe - Carbon Cross section Data, Phys. Rev. D 85 (2012) 013017 [arXiv:1106.5552] [INSPIRE].

    ADS  Google Scholar 

  96. A. Bandyopadhyay and S. Choubey, The (3 + 2) neutrino mass spectrum and double CHOOZ, arXiv:0707.2481 [INSPIRE].

  97. K. Bora, D. Dutta and P. Ghoshal, Probing Sterile Neutrino Parameters with Double CHOOZ, Daya Bay and RENO, JHEP 12 (2012) 025 [arXiv:1206.2172] [INSPIRE].

    Article  ADS  Google Scholar 

  98. C. Giunti and M. Laveder, Effect of the reactor antineutrino anomaly on the first Double-CHOOZ results, Phys. Rev. D 85 (2012) 031301 [arXiv:1111.5211] [INSPIRE].

    ADS  Google Scholar 

  99. B. Bhattacharya, A.M. Thalapillil and C.E. Wagner, Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of θ13, Phys. Rev. D 85 (2012) 073004 [arXiv:1111.4225] [INSPIRE].

    ADS  Google Scholar 

  100. C. Zhang, X. Qian and P. Vogel, Reactor Antineutrino Anomaly with known θ13, arXiv:1303.0900 [INSPIRE].

  101. C. Giunti and Y. Li, Matter Effects in Active-Sterile Solar Neutrino Oscillations, Phys. Rev. D 80 (2009) 113007 [arXiv:0910.5856] [INSPIRE].

    ADS  Google Scholar 

  102. A. Palazzo, Testing the very-short-baseline neutrino anomalies at the solar sector, Phys. Rev. D 83 (2011) 113013 [arXiv:1105.1705] [INSPIRE].

    ADS  Google Scholar 

  103. A. Palazzo, An estimate of θ14 independent of the reactor antineutrino flux determinations, Phys. Rev. D 85 (2012) 077301 [arXiv:1201.4280] [INSPIRE].

    ADS  Google Scholar 

  104. C. Kraus, A. Singer, K. Valerius and C. Weinheimer, Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment, Eur. Phys. J. C 73 (2013) 2323 [arXiv:1210.4194] [INSPIRE].

    ADS  Google Scholar 

  105. A. Belesev et al., An upper limit on additional neutrino mass eigenstate in 2 to 100 eV region from ’Troitsk nu-mass’ data, JETP Lett. 97 (2013) 67 [arXiv:1211.7193] [INSPIRE].

    Article  ADS  Google Scholar 

  106. C. Giunti, M. Laveder, Y. Li and H. Long, Short-Baseline Electron Neutrino Oscillation Length After Troitsk, Phys. Rev. D 87 (2013) 013004 [arXiv:1212.3805] [INSPIRE].

    ADS  Google Scholar 

  107. A.S. Riis and S. Hannestad, Detecting sterile neutrinos with KATRIN like experiments, JCAP 02 (2011) 011 [arXiv:1008.1495] [INSPIRE].

    Article  Google Scholar 

  108. F. Dydak et al., A Search for Muon-neutrino Oscillations in the Delta m 2 Range 0.3-eV 2 to 90-eV 2, Phys. Lett. B 134 (1984) 281 [INSPIRE].

    ADS  Google Scholar 

  109. S.M. Bilenky, C. Giunti, W. Grimus and T. Schwetz, Four neutrino mass spectra and the Super-Kamiokande atmospheric up-down asymmetry, Phys. Rev. D 60 (1999) 073007 [hep-ph/9903454] [INSPIRE].

    ADS  Google Scholar 

  110. H. Nunokawa, O. Peres and R. Zukanovich Funchal, Probing the LSND mass scale and four neutrino scenarios with a neutrino telescope, Phys. Lett. B 562 (2003) 279 [hep-ph/0302039] [INSPIRE].

    ADS  Google Scholar 

  111. S. Choubey, Signature of sterile species in atmospheric neutrino data at neutrino telescopes, JHEP 12 (2007) 014 [arXiv:0709.1937] [INSPIRE].

    Article  ADS  Google Scholar 

  112. S. Razzaque and A.Y. Smirnov, Searching for sterile neutrinos in ice, JHEP 07 (2011) 084 [arXiv:1104.1390] [INSPIRE].

    Article  ADS  Google Scholar 

  113. V. Barger, Y. Gao and D. Marfatia, Is there evidence for sterile neutrinos in IceCube data?, Phys. Rev. D 85 (2012) 011302 [arXiv:1109.5748] [INSPIRE].

    ADS  Google Scholar 

  114. S. Razzaque and A.Y. Smirnov, Searches for sterile neutrinos with IceCube DeepCore, Phys. Rev. D 85 (2012) 093010 [arXiv:1203.5406] [INSPIRE].

    ADS  Google Scholar 

  115. A. Esmaili, F. Halzen and O. Peres, Constraining Sterile Neutrinos with AMANDA and IceCube Atmospheric Neutrino Data, JCAP 11 (2012) 041 [arXiv:1206.6903] [INSPIRE].

    Article  ADS  Google Scholar 

  116. NOMAD collaboration, P. Astier et al., Final NOMAD results on νμ → ντ and νe → ντ oscillations including a new search for tau-neutrino appearance using hadronic tau decays, Nucl. Phys. B 611 (2001) 3 [hep-ex/0106102] [INSPIRE].

    ADS  Google Scholar 

  117. CHORUS collaboration, E. Eskut et al., Final results on νμ → ντ oscillation from the CHORUS experiment, Nucl. Phys. B 793 (2008) 326 [arXiv:0710.3361] [INSPIRE].

    Article  ADS  Google Scholar 

  118. KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations muon-anti-neutrino to electron-anti-neutrino from muon decay at rest, Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021] [INSPIRE].

    ADS  Google Scholar 

  119. NOMAD collaboration, P. Astier et al., Search for νμ → νe oscillations in the NOMAD experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].

    ADS  Google Scholar 

  120. S. Palomares-Ruiz, S. Pascoli and T. Schwetz, Explaining LSND by a decaying sterile neutrino, JHEP 09 (2005) 048 [hep-ph/0505216] [INSPIRE].

    Article  ADS  Google Scholar 

  121. Opera collaboration, N. Agafonova et al., Search for νμ → νe oscillations with the OPERA experiment in the CNGS beam, arXiv:1303.3953 [INSPIRE].

  122. MiniBooNE collaboration, A. Aguilar-Arevalo et al., Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [INSPIRE].

    Article  ADS  Google Scholar 

  123. M. Martini, M. Ericson and G. Chanfray, Neutrino energy reconstruction problems and neutrino oscillations, Phys. Rev. D 85 (2012) 093012 [arXiv:1202.4745] [INSPIRE].

    ADS  Google Scholar 

  124. M. Martini, M. Ericson and G. Chanfray, Energy reconstruction effects in neutrino oscillation experiments and implications for the analysis, Phys. Rev. D 87 (2013) 013009 [arXiv:1211.1523] [INSPIRE].

    ADS  Google Scholar 

  125. M. Maltoni and T. Schwetz, Testing the statistical compatibility of independent data sets, Phys. Rev. D 68 (2003) 033020 [hep-ph/0304176] [INSPIRE].

    ADS  Google Scholar 

  126. B. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].

    Article  ADS  Google Scholar 

  127. SAGE collaboration, J. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002–2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].

    ADS  Google Scholar 

  128. Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].

    ADS  Google Scholar 

  129. Super-Kamiokande collaboration, J. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].

    ADS  Google Scholar 

  130. Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].

    ADS  Google Scholar 

  131. M. Smy, Super-Kamiokande’s Solar ν Results, talk given at Neutrino2012, Kyoto, Japan, 3–9 June 2012.

  132. SNO collaboration, B. Aharmim et al., Measurement of the νe and total B-8 solar neutrino fluxes with the Sudbury neutrino observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [INSPIRE].

    ADS  Google Scholar 

  133. SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].

    ADS  Google Scholar 

  134. SNO collaboration, B. Aharmim et al., An Independent Measurement of the Total Active B-8 Solar Neutrino Flux Using an Array of He-3 Proportional Counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [INSPIRE].

    Article  ADS  Google Scholar 

  135. SNO collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, arXiv:1109.0763 [INSPIRE].

  136. G. Bellini et al., Precision measurement of the 7Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].

    Article  ADS  Google Scholar 

  137. Borexino collaboration, G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].

    ADS  Google Scholar 

  138. H. Long, Y. Li and C. Giunti, CP-violating Phases in Active-Sterile Solar Neutrino Oscillations, arXiv:1304.2207 [INSPIRE].

  139. M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].

    Article  ADS  Google Scholar 

  140. M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Testing matter effects in propagation of atmospheric and long-baseline neutrinos, JHEP 05 (2011) 075 [arXiv:1103.4365] [INSPIRE].

    Article  ADS  Google Scholar 

  141. Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].

    ADS  Google Scholar 

  142. M. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].

    Article  ADS  Google Scholar 

  143. A. Dziewonski and D. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297.

    Article  ADS  Google Scholar 

  144. M. Blennow and T. Ohlsson, Approximative two-flavor framework for neutrino oscillations with non-standard interactions, Phys. Rev. D 78 (2008) 093002 [arXiv:0805.2301] [INSPIRE].

    ADS  Google Scholar 

  145. P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].

    Article  ADS  Google Scholar 

  146. P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: general Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

    Article  ADS  Google Scholar 

  147. C. Rubbia et al., Underground operation of the ICARUS T600 LAr-TPC: first results, 2011 JINST 6 P07011 [arXiv:1106.0975] [INSPIRE].

  148. M. Bonesini and A. Guglielmi, Hadroproduction experiments for precise neutrino beam calculations, Phys. Rept. 433 (2006) 65 [INSPIRE].

    Article  ADS  Google Scholar 

  149. SciBooNE collaboration, G. Cheng et al., Measurement of K + production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector, Phys. Rev. D 84 (2011) 012009 [arXiv:1105.2871] [INSPIRE].

    ADS  Google Scholar 

  150. P. Vahle, Results from MINOS, talk given on behalf of the MINOS Collaboration at Neutrino 2010 conference, Athens, Greece, 2010 [slides].

  151. MINOS collaboration, P. Adamson et al., Measurement of the neutrino mass splitting and flavor mixing by MINOS, Phys. Rev. Lett. 106 (2011) 181801 [arXiv:1103.0340] [INSPIRE].

    Article  ADS  Google Scholar 

  152. A. Sousa, private communication (2011).

  153. M. Bishai, private communication (2011).

  154. M.D. Messier, Evidence for neutrino mass from observations of atmospheric neutrinos with super-kamiokande, UMI-99-23965.

  155. E. Paschos and J. Yu, Neutrino interactions in oscillation experiments, Phys. Rev. D 65 (2002) 033002 [hep-ph/0107261] [INSPIRE].

    ADS  Google Scholar 

  156. C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany

    Joachim Kopp & Thomas Schwetz

  2. Instituto de Física, Universidade de São Paulo, C.P. 66.318, 05315-970, São Paulo, Brazil

    Pedro A. N. Machado

  3. Institut de Physique Théorique, CEA-Saclay, 91191, Gif-sur-Yvette, France

    Pedro A. N. Machado

  4. Instituto de Física Teórica UAM/CSIC, Calle de Nicolás Cabrera 13-15, E-28049, Madrid, Spain

    Michele Maltoni

Authors
  1. Joachim Kopp
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pedro A. N. Machado
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Michele Maltoni
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Thomas Schwetz
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michele Maltoni.

Additional information

ArXiv ePrint: 1303.3011

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Kopp, J., Machado, P.A.N., Maltoni, M. et al. Sterile neutrino oscillations: the global picture. J. High Energ. Phys. 2013, 50 (2013). https://doi.org/10.1007/JHEP05(2013)050

Download citation

  • Received: 21 March 2013

  • Accepted: 28 April 2013

  • Published: 10 May 2013

  • DOI: https://doi.org/10.1007/JHEP05(2013)050

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Neutrino Physics
  • Solar and Atmospheric Neutrinos
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.