Skip to main content
Log in

Time evolution of entanglement entropy from black hole interiors

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the time-dependent entanglement entropy of a CFT which starts in relatively simple initial states. The initial states are the thermofield double for thermal states, dual to eternal black holes, and a particular pure state, dual to a black hole formed by gravitational collapse. The entanglement entropy grows linearly in time. This linear growth is directly related to the growth of the black hole interior measured along “nice” spatial slices. These nice slices probe the spacelike direction in the interior, at a fixed special value of the interior time. In the case of a two-dimensional CFT, we match the bulk and boundary computations of the entanglement entropy. We briefly discuss the long time behavior of various correlators, computed via classical geodesics or surfaces, and point out that their exponential decay comes about for similar reasons. We also present the time evolution of the wavefunction in the tensor network description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].

    Article  ADS  Google Scholar 

  7. V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

    Article  ADS  Google Scholar 

  8. V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  9. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  11. P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393].

  12. T. Takayanagi and T. Ugajin, Measuring black hole formations by entanglement entropy via coarse-graining, JHEP 11 (2010) 054 [arXiv:1008.3439] [INSPIRE].

    Article  ADS  Google Scholar 

  13. C.T. Asplund and S.G. Avery, Evolution of entanglement entropy in the D1-D5 brane system, Phys. Rev. D 84 (2011) 124053 [arXiv:1108.2510] [INSPIRE].

    ADS  Google Scholar 

  14. P. Basu and S.R. Das, Quantum quench across a holographic critical point, JHEP 01 (2012) 103 [arXiv:1109.3909] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. Basu, D. Das, S.R. Das and T. Nishioka, Quantum quench across a zero temperature holographic superfluid transition, JHEP 03 (2013) 146 [arXiv:1211.7076] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, Quantum quenches of holographic plasmas, arXiv:1302.2924 [INSPIRE].

  17. V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].

    ADS  Google Scholar 

  18. A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Nozaki, T. Numasawa and T. Takayanagi, Holographic local quenches and entanglement density, arXiv:1302.5703 [INSPIRE].

  20. J. Maldacena and G.L. Pimentel, Entanglement entropy in de Sitter space, JHEP 02 (2013) 038 [arXiv:1210.7244] [INSPIRE].

    Article  ADS  Google Scholar 

  21. W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  24. T. Azeyanagi, T. Nishioka and T. Takayanagi, Near extremal black hole entropy as entanglement entropy via AdS 2 /CF T 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. J. Louko and D. Marolf, Single exterior black holes and the AdS/CFT conjecture, Phys. Rev. D 59 (1999) 066002 [hep-th/9808081] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. J. Polchinski, String theory and black hole complementarity, hep-th/9507094 [INSPIRE].

  27. C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. P. Calabrese and J. Cardy, Quantum quenches in extended systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  29. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

    MathSciNet  Google Scholar 

  30. I.A. Morrison and M.M. Roberts, Mutual information between thermo-field doubles and disconnected holographic boundaries, arXiv:1211.2887 [INSPIRE].

  31. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  32. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. V.E. Hubeny and M. Rangamani, Holographic entanglement entropy for disconnected regions, JHEP 03 (2008) 006 [arXiv:0711.4118] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Parikh and P. Samantray, Rindler-AdS/CFT, arXiv:1211.7370 [INSPIRE].

  37. G. Festuccia and H. Liu, A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes, Adv. Sci. Lett. 2 (2009) 221 [arXiv:0811.1033] [INSPIRE].

    Article  Google Scholar 

  38. L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Festuccia and H. Liu, Excursions beyond the horizon: black hole singularities in Yang-Mills theories. I, JHEP 04 (2006) 044 [hep-th/0506202] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. G. Vidal, Entanglement Renormalization: an introduction, in Understanding quantum phase transitions, L.D. Carr ed., Taylor & Francis, Boca Raton U.S.A. (2010), arXiv:0912.1651.

  41. S. Ostlund and S. Rommer, Thermodynamic limit of density matrix renormalization for the spin-1 Heisenberg chain, Phys. Rev. Lett. 75 (1995) 3537 [cond-mat/9503107] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69 (1992) 2863 [INSPIRE].

    Article  ADS  Google Scholar 

  43. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics 326 (2011) 96 [arXiv:1008.3477].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. F. Verstraete and J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, cond-mat/0407066.

  45. G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett. 101 (2008) 110501 [INSPIRE].

    Article  ADS  Google Scholar 

  46. B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

    ADS  Google Scholar 

  47. G. Evenbly and G. Vidal, Tensor network states and geometry, J. Stat. Phys. 145 (2011) 891 [arXiv:1106.1082].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].

  49. M. Nozaki, S. Ryu and T. Takayanagi, Holographic geometry of entanglement renormalization in quantum field theories, arXiv:1208.3469 [INSPIRE].

  50. J.M. Maldacena and L. Susskind, D-branes and fat black holes, Nucl. Phys. B 475 (1996) 679 [hep-th/9604042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  ADS  Google Scholar 

  52. D. Harlow and P. Hayden, Quantum computation vs. firewalls, arXiv:1301.4504 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hartman.

Additional information

ArXiv ePrint: 1303.1080

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartman, T., Maldacena, J. Time evolution of entanglement entropy from black hole interiors. J. High Energ. Phys. 2013, 14 (2013). https://doi.org/10.1007/JHEP05(2013)014

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)014

Keywords

Navigation