Skip to main content

Parity-violating hydrodynamics in 2 + 1 dimensions

Abstract

We study relativistic hydrodynamics of normal fluids in two spatial dimensions. When the microscopic theory breaks parity, extra transport coefficients appear in the hy- drodynamic regime, including the Hall viscosity, and the anomalous Hall conductivity. In this work we classify all the transport coefficients in first order hydrodynamics. We then use properties of response functions and the positivity of entropy production to restrict the possible coefficients in the constitutive relations. All the parity-breaking transport coeffi- cients are dissipationless, and some of them are related to the thermodynamic response to an external magnetic field and to vorticity. In addition, we give a holographic example of a strongly interacting relativistic fluid where the parity-violating transport coefficients are computable.

This is a preview of subscription content, access via your institution.

References

  1. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon Press (1987).

  2. S. Weinberg, Gravitation and Cosmology, John Wiley & Sons, (1972).

  3. D.A. Teaney, Viscous Hydrodynamics and the Quark Gluon Plasma, arXiv:0905.2433 [INSPIRE].

  4. S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].

    ADS  Google Scholar 

  5. M. Muller and S. Sachdev, Collective cyclotron motion of the relativistic plasma in graphene, Phys. Rev. B 78 (2008) 115419 [arXiv:0801.2970] [INSPIRE].

    ADS  Google Scholar 

  6. N. Read, Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and px + ipy paired superfluids, Phys. Rev. B 79 (2009) 045308 [arXiv:0805.2507] [INSPIRE].

    ADS  Google Scholar 

  7. A. Nicolis and D.T. Son, Hall viscosity from effective field theory, arXiv:1103.2137 [INSPIRE].

  8. G.D. Moore and K.A. Sohrabi, Kubo Formulae for Second-Order Hydrodynamic Coefficients, Phys. Rev. Lett. 106 (2011) 122302 [arXiv:1007.5333] [INSPIRE].

    ADS  Article  Google Scholar 

  9. J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A Theory of first order dissipative superfluid dynamics, arXiv:1105.3733 [INSPIRE].

  10. O. Saremi and D.T. Son, Hall viscosity from gauge/gravity duality, JHEP 04 (2012) 091 [arXiv:1103.4851] [INSPIRE].

    ADS  Article  Google Scholar 

  11. L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev. 37 (1931) 405.

    ADS  Google Scholar 

  12. L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev. 38 (1931) 2265.

    ADS  MATH  Google Scholar 

  13. F. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ’Parity Anomaly’, Phys. Rev. Lett. 61 (1988) 2015 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  14. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald and N.P. Ong, Anomalous Hall effect, Reviews of Modern Physics 82 (2010) 1539 [arXiv:0904.4154].

    ADS  Article  Google Scholar 

  15. S. Ryu, J.E. Moore and A.W. Ludwig, Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors, Phys. Rev. B 85 (2012) 045104 [arXiv:1010.0936] [INSPIRE].

    ADS  Google Scholar 

  16. J. Avron, R. Seiler and P. Zograf, Viscosity of quantum Hall fluids, Phys. Rev. Lett. 75 (1995) 697 [INSPIRE].

    ADS  Article  Google Scholar 

  17. J.E. Avron, Odd Viscosity, physics/9712050.

  18. N. Read and E.H. Rezayi, Hall viscosity, orbital spin and geometry: Paired superfluids and quantum Hall systems, Phys. Rev. B 84 (2011) 085316 [arXiv:1008.0210].

    ADS  Google Scholar 

  19. T.L. Hughes, R.G. Leigh and E. Fradkin, Torsional Response and Dissipationless Viscosity in Topological Insulators, Phys. Rev. Lett. 107 (2011) 075502 [arXiv:1101.3541] [INSPIRE].

    ADS  Article  Google Scholar 

  20. C. Hoyos and D.T. Son, Hall Viscosity and Electromagnetic Response, Phys. Rev. Lett. 108 (2012) 066805 [arXiv:1109.2651] [INSPIRE].

    ADS  Article  Google Scholar 

  21. T. Delsate, V. Cardoso and P. Pani, Anti de Sitter black holes and branes in dynamical Chern-Simons gravity: perturbations, stability and the hydrodynamic modes, JHEP 06 (2011) 055 [arXiv:1103.5756] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  22. T. Kimura and T. Nishioka, The Chiral Heat Effect, arXiv:1109.6331 [INSPIRE].

  23. J.-W. Chen, N.-E. Lee, D. Maity and W.-Y. Wen, A Holographic Model For Hall Viscosity, arXiv:1110.0793 [INSPIRE].

  24. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

    ADS  Google Scholar 

  25. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

    ADS  Google Scholar 

  26. N. Ajitanand, R.A. Lacey, A. Taranenko and J. Alexander, A New method for the experimental study of topological effects in the quark-gluon plasma, Phys. Rev. C 83 (2011) 011901 [arXiv:1009.5624] [INSPIRE].

    ADS  Google Scholar 

  27. V. Orlovsky and V. Shevchenko, Towards a quantum theory of chiral magnetic effect, Phys. Rev. D 82 (2010) 094032 [arXiv:1008.4977] [INSPIRE].

    ADS  Google Scholar 

  28. D.E. Kharzeev and D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106 (2011) 062301 [arXiv:1010.0038] [INSPIRE].

    ADS  Article  Google Scholar 

  29. D.E. Kharzeev and H.J. Warringa, Chiral Magnetic conductivity, Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [INSPIRE].

    ADS  Google Scholar 

  30. S. Ozonder, Maxwell- Chern-Simons Hydrodynamics for the Chiral Magnetic Effect, Phys. Rev. C 81 (2010) 062201 [Erratum ibid. C 84 (2011) 019903] [arXiv:1004.3883] [INSPIRE].

    ADS  Google Scholar 

  31. B. Keren-Zur and Y. Oz, Hydrodynamics and the Detection of the QCD Axial Anomaly in Heavy Ion Collisions, JHEP 06 (2010) 006 [arXiv:1002.0804] [INSPIRE].

    ADS  Article  Google Scholar 

  32. D.E. Kharzeev and H.-U. Yee, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations, Phys. Rev. D 84 (2011) 045025 [arXiv:1105.6360] [INSPIRE].

    ADS  Google Scholar 

  33. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    ADS  Article  Google Scholar 

  34. N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].

    ADS  Article  Google Scholar 

  35. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  36. I. Amado, K. Landsteiner and F. Pena-Benitez, Anomalous transport coefficients from Kubo formulas in Holography, JHEP 05 (2011) 081 [arXiv:1102.4577] [INSPIRE].

    ADS  Article  Google Scholar 

  37. A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [INSPIRE].

    ADS  Article  Google Scholar 

  38. A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic Anomalous Conductivities and the Chiral Magnetic Effect, JHEP 02 (2011) 110 [arXiv:1005.2587] [INSPIRE].

    ADS  Article  Google Scholar 

  39. T. Kalaydzhyan and I. Kirsch, Fluid/gravity model for the chiral magnetic effect, Phys. Rev. Lett. 106 (2011) 211601 [arXiv:1102.4334] [INSPIRE].

    ADS  Article  Google Scholar 

  40. C. Hoyos, T. Nishioka and A. O’Bannon, A Chiral Magnetic Effect from AdS/CFT with Flavor, JHEP 10 (2011) 084 [arXiv:1106.4030] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  41. Y. Matsuo, S.-J. Sin, S. Takeuchi and T. Tsukioka, Magnetic conductivity and Chern-Simons Term in Holographic Hydrodynamics of Charged AdS Black Hole, JHEP 04 (2010) 071 [arXiv:0910.3722] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  42. D. Son and A.R. Zhitnitsky, Quantum anomalies in dense matter, Phys. Rev. D 70 (2004) 074018 [hep-ph/0405216] [INSPIRE].

    ADS  Google Scholar 

  43. D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  44. K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic Gravitational Anomaly and Chiral Vortical Effect, JHEP 09 (2011) 121 [arXiv:1107.0368] [INSPIRE].

    ADS  Article  Google Scholar 

  45. K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational Anomaly and Transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].

    ADS  Article  Google Scholar 

  46. Y. Neiman and Y. Oz, Anomalies in Superfluids and a Chiral Electric Effect, JHEP 09 (2011) 011 [arXiv:1106.3576] [INSPIRE].

    ADS  Article  Google Scholar 

  47. S. Lin, On the anomalous superfluid hydrodynamics, Nucl. Phys. A 873 (2012) 28 [arXiv:1104.5245] [INSPIRE].

    ADS  Google Scholar 

  48. S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, arXiv:1107.0732 [INSPIRE].

  49. R. Loganayagam, Anomaly Induced Transport in Arbitrary Dimensions, arXiv:1106.0277 [INSPIRE].

  50. J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative Superfluid dynamics from gravity, JHEP 04 (2011) 125 [arXiv:1101.3332] [INSPIRE].

    ADS  Article  Google Scholar 

  51. R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan 12 (1957) 570.

    MathSciNet  ADS  Article  Google Scholar 

  52. L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Ann. Phys. 24 (1963) 419/

    Google Scholar 

  53. K.-c. Chou, Z.-b. Su, B.-l. Hao and L. Yu, Equilibrium and Nonequilibrium Formalisms Made Unified, Phys. Rept. 118 (1985) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  54. E. Wang and U.W. Heinz, A Generalized fluctuation dissipation theorem for nonlinear response functions, Phys. Rev. D 66 (2002) 025008 [hep-th/9809016] [INSPIRE].

    ADS  Google Scholar 

  55. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  56. P. Romatschke and D.T. Son, Spectral sum rules for the quark-gluon plasma, Phys. Rev. D 80 (2009) 065021 [arXiv:0903.3946] [INSPIRE].

    ADS  Google Scholar 

  57. P. Kovtun, G.D. Moore and P. Romatschke, The stickiness of sound: An absolute lower limit on viscosity and the breakdown of second order relativistic hydrodynamics, Phys. Rev. D 84 (2011) 025006 [arXiv:1104.1586] [INSPIRE].

    ADS  Google Scholar 

  58. P. Kovtun and L.G. Yaffe, Hydrodynamic fluctuations, long time tails and supersymmetry, Phys. Rev. D 68 (2003) 025007 [hep-th/0303010] [INSPIRE].

    ADS  Google Scholar 

  59. S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla, Large rotating AdS black holes from fluid mechanics, JHEP 09 (2008) 054 [arXiv:0708.1770] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  60. R.G. Leigh, A.C. Petkou and P.M. Petropoulos, Holographic Three-Dimensional Fluids with Nontrivial Vorticity, arXiv:1108.1393 [INSPIRE].

  61. N.R. Cooper, B.I. Halperin and I.M. Ruzin, Thermoelectric response of an interacting two-dimensional electron gas in a quantizing magnetic field, Phys. Rev. B 55 (1997) 2344.

    ADS  Google Scholar 

  62. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  63. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  64. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  65. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall Effect in a Holographic Model, JHEP 10 (2010) 063 [arXiv:1003.4965] [INSPIRE].

    ADS  Article  Google Scholar 

  66. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  67. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  68. V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  69. M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  70. A. Petkou and K. Skenderis, A Nonrenormalization theorem for conformal anomalies, Nucl. Phys. B 561 (1999) 100 [hep-th/9906030] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  71. L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  72. B. Carter, Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s equations, Commun.Math.Phys. 10 (1968) 280.

    MATH  Google Scholar 

  73. J. Plebanski and M. Demianski, Rotating, charged and uniformly accelerating mass in general relativity, Annals Phys. 98 (1976) 98 [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  74. M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  75. A. Yarom, Notes on the bulk viscosity of holographic gauge theory plasmas, JHEP 04 (2010) 024 [arXiv:0912.2100] [INSPIRE].

    ADS  Article  Google Scholar 

  76. P.M. Hohler and M.A. Stephanov, Holography and the speed of sound at high temperatures, Phys. Rev. D 80 (2009) 066002 [arXiv:0905.0900] [INSPIRE].

    ADS  Google Scholar 

  77. A. Cherman, T.D. Cohen and A. Nellore, A Bound on the speed of sound from holography, Phys. Rev. D 80 (2009) 066003 [arXiv:0905.0903] [INSPIRE].

    ADS  Google Scholar 

  78. J. Hur, K.K. Kim and S.-J. Sin, Hydrodynamics with conserved current from the gravity dual, JHEP 03 (2009) 036 [arXiv:0809.4541] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  79. K.S. Thorne and R.H. Price and D.A. Macdonald (eds.), Black Holes: The Membrane Paradigm, Yale University Press, (1986).

  80. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  81. C. Ridgely, Applying relativistic electrodynamics to a rotating material medium, Am. J. Phys. 66 (1998) 114.

    ADS  Article  Google Scholar 

  82. K. Nomura, S. Ryu, A. Furusaki and N. Nagaosa, Cross-Correlated Responses of Topological Superconductors and Superfluids, Phys. Rev. Lett. 108 (2012) 026802 [arXiv:1108.5054] [INSPIRE].

    ADS  Article  Google Scholar 

  83. K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, to appear.

  84. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  85. N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on Fluid Dynamics from Equilibrium Partition Functions, arXiv:1203.3544.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kaminski.

Additional information

ArXiv ePrint: 1112.4498

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jensen, K., Kaminski, M., Kovtun, P. et al. Parity-violating hydrodynamics in 2 + 1 dimensions. J. High Energ. Phys. 2012, 102 (2012). https://doi.org/10.1007/JHEP05(2012)102

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)102

Keywords

  • Gauge-gravity correspondence
  • Holography and condensed matter physics
  • (AdS/CMT)
  • Discrete and Finite Symmetries
  • Holography and quark-gluon plasmas