SUSY renormalization group effects in ultra high energy neutrinos
- 236 Downloads
- 5 Citations
Abstract
We have explored the question of whether the renormalization group running of the neutrino mixing parameters in the Minimal Supersymmetric Standard Model is detectable with ultra-high energy neutrinos from active galactic nuclei (AGN). We use as observables the ratios of neutrino fluxes produced at the AGN, focusing on four different neutrino production models: \( \left( {\Phi_{{\nu_e} + {{\bar{\nu }}_e}}^0:\Phi_{{\nu_\mu } + {{\bar{\nu }}_\mu }}^0:\Phi_{{\nu_\tau } + {{\bar{\nu }}_\tau }}^0} \right) = \left( {1:2:0} \right),\left( {0:1:0} \right),\left( {1:0:0} \right) \), and (1 : 1 : 0). The prospects for observing deviations experimentally are taken into consideration, and we find out that it is necessary to impose a cut-off on the transferred momentum of Q 2 ≥ 107 GeV2. However, this condition, together with the expected low value of the diffuse AGN neutrino flux, yields a negligible event rate at a km-scale C̆erenkov detector such as IceCube.
Keywords
Neutrino Physics Supersymmetric Standard Model Renormalization GroupReferences
- [1]M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].ADSCrossRefGoogle Scholar
- [2]R.N. Mohapatra et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [SPIRES].ADSCrossRefGoogle Scholar
- [3]K.I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, Electroweak radiative corrections to high-energy neutrino e scatterings, Prog. Theor. Phys. 65 (1981) 1001 [SPIRES].ADSCrossRefGoogle Scholar
- [4]A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ∆M d,s, B d,s 0 → μ + μ − and B → X s γ in supersymmetry at large tan β, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145] [SPIRES].ADSCrossRefGoogle Scholar
- [5]J.C. Collins, Renormalization. An introduction to renormalization, the renormalization group, and the operator product expansion, Cambridge University Press, Cambridge U.K. (1984) [SPIRES].zbMATHCrossRefGoogle Scholar
- [6]K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223] [SPIRES].ADSGoogle Scholar
- [7]S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005] [SPIRES].ADSGoogle Scholar
- [8]S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366] [SPIRES].ADSGoogle Scholar
- [9]S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401 [hep-ph/0305273] [SPIRES].ADSCrossRefGoogle Scholar
- [10]S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [SPIRES].ADSCrossRefGoogle Scholar
- [11]P. Minkowski, μ → e at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
- [12]R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].ADSCrossRefGoogle Scholar
- [13]J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
- [14]R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
- [15]A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [SPIRES].ADSGoogle Scholar
- [16]K.S. Babu, Model of ’calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [SPIRES].ADSGoogle Scholar
- [17]L.J. Hall and M. Suzuki, Explicit R-parity breaking in supersymmetric models, Nucl. Phys. B 231 (1984) 419 [SPIRES].ADSCrossRefGoogle Scholar
- [18]WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [SPIRES].ADSCrossRefGoogle Scholar
- [19]G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [SPIRES].ADSCrossRefGoogle Scholar
- [20]S. Davidson, J. Garayoa, F. Palorini and N. Rius, CP violation in the SUSY seesaw: leptogenesis and low energy, JHEP 09 (2008) 053 [arXiv:0806.2832] [SPIRES].ADSCrossRefGoogle Scholar
- [21]I.d.M. Varzielas, G.G. Ross and M. Serna, Quasi-degenerate neutrinos and tri-bi-maximal mixing, Phys. Rev. D 80 (2009) 073002 [arXiv:0811.2226] [SPIRES].ADSGoogle Scholar
- [22]M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [SPIRES].ADSGoogle Scholar
- [23]Y. Lin, L. Merlo and A. Paris, Running effects on lepton mixing angles in flavour models with type I seesaw, Nucl. Phys. B 835 (2010) 238 [arXiv:0911.3037] [SPIRES].ADSCrossRefGoogle Scholar
- [24]A. Masiero, S.K. Vempati and O. Vives, Flavour physics and grand unification, in the proceedings of the Les Houches summer school on theoretical physics. Session 84: particle physics beyond the standard model, August 1–26, Les Houches, France (2005), arXiv:0711.2903 [SPIRES].
- [25]J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].ADSGoogle Scholar
- [26]M.L. Costantini and F. Vissani, Expected neutrino signal from supernova remnant RX J1713.7-3946 and flavor oscillations, Astropart. Phys. 23 (2005) 477 [astro-ph/0411761] [SPIRES].ADSCrossRefGoogle Scholar
- [27]E. Waxman and J.N. Bahcall, High energy neutrinos from cosmological-ray burst fireballs, Phys. Rev. Lett. 78 (1997) 2292 [astro-ph/9701231] [SPIRES].ADSCrossRefGoogle Scholar
- [28]F.W. Stecker, C. Done, M.H. Salamon and P. Sommers, High-energy neutrinos from active galactic nuclei, Phys. Rev. Lett. 66 (1991) 2697 [Erratum ibid. 69 (1992) 2738] [SPIRES].ADSCrossRefGoogle Scholar
- [29]M. Kachelriess, Lecture notes on high energy cosmic rays, arXiv:0801.4376 [SPIRES].
- [30]P. Lipari, M. Lusignoli and D. Meloni, Flavor composition and energy spectrum of astrophysical neutrinos, Phys. Rev. D 75 (2007) 123005 [arXiv:0704.0718] [SPIRES].ADSGoogle Scholar
- [31]H. Athar, C.S. Kim and J. Lee, The intrinsic and oscillated astrophysical neutrino flavor ratios, Mod. Phys. Lett. A 21 (2006) 1049 [hep-ph/0505017] [SPIRES].ADSGoogle Scholar
- [32]G. Barenboim and C. Quigg, Neutrino observatories can characterize cosmic sources and neutrino properties, Phys. Rev. D 67 (2003) 073024 [hep-ph/0301220] [SPIRES].ADSGoogle Scholar
- [33]M. Bustamante, A.M. Gago and C. Pena-Garay, Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos, JHEP 04 (2010) 066 [arXiv:1001.4878] [SPIRES].ADSCrossRefGoogle Scholar
- [34]S. Hummer, M. Maltoni, W. Winter and C. Yaguna, Energy dependent neutrino flavor ratios from cosmic accelerators on the Hillas plot, Astropart. Phys. 34 (2010) 205 [arXiv:1007.0006] [SPIRES].ADSCrossRefGoogle Scholar
- [35]J.P. Rachen and P. Meszaros, Photohadronic neutrinos from transients in astrophysical sources, Phys. Rev. D 58 (1998) 123005 [astro-ph/9802280] [SPIRES].ADSGoogle Scholar
- [36]T. Kashti and E. Waxman, Flavoring astrophysical neutrinos: flavor ratios depend on energy, Phys. Rev. Lett. 95 (2005) 181101 [astro-ph/0507599] [SPIRES].ADSCrossRefGoogle Scholar
- [37]R. Enberg, M.H. Reno and I. Sarcevic, Prompt neutrino fluxes from atmospheric charm, Phys. Rev. D 78 (2008) 043005 [arXiv:0806.0418] [SPIRES].ADSGoogle Scholar
- [38]S. Choubey and W. Rodejohann, Flavor composition of UHE neutrinos at source and at neutrino telescopes, Phys. Rev. D 80 (2009) 113006 [arXiv:0909.1219] [SPIRES].ADSGoogle Scholar
- [39]L. Anchordoqui and F. Halzen, IceHEP high energy physics at the South Pole, Annals Phys. 321 (2006) 2660 [hep-ph/0510389] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
- [40]J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa and T.J. Weiler, Measuring flavor ratios of high-energy astrophysical neutrinos, Phys. Rev. D 68 (2003) 093005 [hep-ph/0307025] [SPIRES].ADSGoogle Scholar
- [41]C. Giunti and C.W. Kim, Fundamentals of neutrino physics and astrophysics, Oxford University Press, Oxford U.K. (2007) [SPIRES].CrossRefGoogle Scholar
- [42]R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, Ultrahigh-energy neutrino interactions, Astropart. Phys. 5 (1996) 81 [hep-ph/9512364] [SPIRES].ADSCrossRefGoogle Scholar
- [43]J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
- [44]
- [45]A. Connolly, The radio Cherenkov technique for ultra-high energy neutrino detection, Nucl. Instrum. Meth. A 595 (2008) 260 [arXiv:0809.3669] [SPIRES].ADSGoogle Scholar
- [46]IceCube collaboration, R. Abbasi et al., Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy, Astropart. Phys. 33 (2010) 277 [arXiv:0909.2629] [SPIRES].ADSCrossRefGoogle Scholar
- [47]L.A. Anchordoqui et al., Probing Planck scale physics with IceCube, Phys. Rev. D 72 (2005) 065019 [hep-ph/0506168] [SPIRES].ADSGoogle Scholar
- [48]E. Waxman, Astrophysical sources of high energy neutrinos, Nucl. Phys. Proc. Suppl. 118 (2003) 353 [astro-ph/0211358] [SPIRES].ADSCrossRefGoogle Scholar
- [49]J.K. Becker and P.L. Biermann, Neutrinos from active black holes, sources of ultra high energy cosmic rays, Astropart. Phys. 31 (2009) 138 [arXiv:0805.1498] [SPIRES].ADSCrossRefGoogle Scholar
- [50]C.A. Arguelles, M. Bustamante and A.M. Gago, IceCube expectations for two high-energy neutrino production models at active galactic nuclei, JCAP 12 (2010) 005 [arXiv:1008.1396] [SPIRES].ADSGoogle Scholar
- [51]Pierre Auger Observatory collaboration, P. Abreu et al., Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter, Astropart. Phys. 34 (2010) 314 [arXiv:1009.1855] [SPIRES].ADSCrossRefGoogle Scholar
- [52]IceCube collaboration, R. Abbasi et al., The first search for extremely-high energy cosmogenic neutrinos with the IceCube neutrino observatory, Phys. Rev. D 82 (2010) 072003 [arXiv:1009.1442] [SPIRES].ADSGoogle Scholar
- [53]A. Ishihara, Searches for the highest energy neutrino with IceCube, talk presented at COSMO/CosPA 2010, September 27–October 1, Tokyo, Japan (2010).Google Scholar
- [54]The ANITA collaboration, P.W. Gorham et al., Observational constraints on the ultra-high energy cosmic neutrino flux from the second flight of the ANITA experiment, Phys. Rev. D 82 (2010) 022004 [arXiv:1003.2961] [SPIRES].ADSGoogle Scholar
- [55]Pierre Auger collaboration, J. Abraham et al., Limit on the diffuse flux of ultra-high energy tau neutrinos with the surface detector of the Pierre Auger Observatory, Phys. Rev. D 79 (2009) 102001 [arXiv:0903.3385] [SPIRES].ADSGoogle Scholar
- [56]I. Kravchenko et al., RICE limits on the diffuse ultra-high energy neutrino flux, Phys. Rev. D 73 (2006) 082002 [astro-ph/0601148] [SPIRES].ADSGoogle Scholar
- [57]S. Yoshida, IceCube high-energy neutrino astrophysics: where we are and where we go, talk presented at the 2010 Autumn Meeting of The Physical Society of Japan, Semptember 23–26, Kitakyushu, Japan (2010).Google Scholar
- [58]T.M. f. t.I. Collaboration, IceCube and searches for astrophysical sources, arXiv:1012.0881 [SPIRES].
- [59]K. Kotera, D. Allard and A.V. Olinto, Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV, JCAP 10 (2010) 013 [arXiv:1009.1382] [SPIRES].ADSGoogle Scholar
Copyright information
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.