SUSY renormalization group effects in ultra high energy neutrinos

  • M. BustamanteEmail author
  • A. M. Gago
  • J. Jones Pérez
Open Access


We have explored the question of whether the renormalization group running of the neutrino mixing parameters in the Minimal Supersymmetric Standard Model is detectable with ultra-high energy neutrinos from active galactic nuclei (AGN). We use as observables the ratios of neutrino fluxes produced at the AGN, focusing on four different neutrino production models: \( \left( {\Phi_{{\nu_e} + {{\bar{\nu }}_e}}^0:\Phi_{{\nu_\mu } + {{\bar{\nu }}_\mu }}^0:\Phi_{{\nu_\tau } + {{\bar{\nu }}_\tau }}^0} \right) = \left( {1:2:0} \right),\left( {0:1:0} \right),\left( {1:0:0} \right) \), and (1 : 1 : 0). The prospects for observing deviations experimentally are taken into consideration, and we find out that it is necessary to impose a cut-off on the transferred momentum of Q 2 ≥ 107 GeV2. However, this condition, together with the expected low value of the diffuse AGN neutrino flux, yields a negligible event rate at a km-scale C̆erenkov detector such as IceCube.


Neutrino Physics Supersymmetric Standard Model Renormalization Group 


  1. [1]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    R.N. Mohapatra et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    K.I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, Electroweak radiative corrections to high-energy neutrino e scatterings, Prog. Theor. Phys. 65 (1981) 1001 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ∆M d,s, B d,s 0 → μ + μ and B → X s γ in supersymmetry at large tan β, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    J.C. Collins, Renormalization. An introduction to renormalization, the renormalization group, and the operator product expansion, Cambridge University Press, Cambridge U.K. (1984) [SPIRES].zbMATHCrossRefGoogle Scholar
  6. [6]
    K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223] [SPIRES].ADSGoogle Scholar
  7. [7]
    S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005] [SPIRES].ADSGoogle Scholar
  8. [8]
    S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366] [SPIRES].ADSGoogle Scholar
  9. [9]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401 [hep-ph/0305273] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    P. Minkowski, μ → e at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  12. [12]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  14. [14]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
  15. [15]
    A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [SPIRES].ADSGoogle Scholar
  16. [16]
    K.S. Babu, Model of ’calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [SPIRES].ADSGoogle Scholar
  17. [17]
    L.J. Hall and M. Suzuki, Explicit R-parity breaking in supersymmetric models, Nucl. Phys. B 231 (1984) 419 [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    S. Davidson, J. Garayoa, F. Palorini and N. Rius, CP violation in the SUSY seesaw: leptogenesis and low energy, JHEP 09 (2008) 053 [arXiv:0806.2832] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    I.d.M. Varzielas, G.G. Ross and M. Serna, Quasi-degenerate neutrinos and tri-bi-maximal mixing, Phys. Rev. D 80 (2009) 073002 [arXiv:0811.2226] [SPIRES].ADSGoogle Scholar
  22. [22]
    M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [SPIRES].ADSGoogle Scholar
  23. [23]
    Y. Lin, L. Merlo and A. Paris, Running effects on lepton mixing angles in flavour models with type I seesaw, Nucl. Phys. B 835 (2010) 238 [arXiv:0911.3037] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    A. Masiero, S.K. Vempati and O. Vives, Flavour physics and grand unification, in the proceedings of the Les Houches summer school on theoretical physics. Session 84: particle physics beyond the standard model, August 1–26, Les Houches, France (2005), arXiv:0711.2903 [SPIRES].
  25. [25]
    J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].ADSGoogle Scholar
  26. [26]
    M.L. Costantini and F. Vissani, Expected neutrino signal from supernova remnant RX J1713.7-3946 and flavor oscillations, Astropart. Phys. 23 (2005) 477 [astro-ph/0411761] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    E. Waxman and J.N. Bahcall, High energy neutrinos from cosmological-ray burst fireballs, Phys. Rev. Lett. 78 (1997) 2292 [astro-ph/9701231] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    F.W. Stecker, C. Done, M.H. Salamon and P. Sommers, High-energy neutrinos from active galactic nuclei, Phys. Rev. Lett. 66 (1991) 2697 [Erratum ibid. 69 (1992) 2738] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    M. Kachelriess, Lecture notes on high energy cosmic rays, arXiv:0801.4376 [SPIRES].
  30. [30]
    P. Lipari, M. Lusignoli and D. Meloni, Flavor composition and energy spectrum of astrophysical neutrinos, Phys. Rev. D 75 (2007) 123005 [arXiv:0704.0718] [SPIRES].ADSGoogle Scholar
  31. [31]
    H. Athar, C.S. Kim and J. Lee, The intrinsic and oscillated astrophysical neutrino flavor ratios, Mod. Phys. Lett. A 21 (2006) 1049 [hep-ph/0505017] [SPIRES].ADSGoogle Scholar
  32. [32]
    G. Barenboim and C. Quigg, Neutrino observatories can characterize cosmic sources and neutrino properties, Phys. Rev. D 67 (2003) 073024 [hep-ph/0301220] [SPIRES].ADSGoogle Scholar
  33. [33]
    M. Bustamante, A.M. Gago and C. Pena-Garay, Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos, JHEP 04 (2010) 066 [arXiv:1001.4878] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    S. Hummer, M. Maltoni, W. Winter and C. Yaguna, Energy dependent neutrino flavor ratios from cosmic accelerators on the Hillas plot, Astropart. Phys. 34 (2010) 205 [arXiv:1007.0006] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    J.P. Rachen and P. Meszaros, Photohadronic neutrinos from transients in astrophysical sources, Phys. Rev. D 58 (1998) 123005 [astro-ph/9802280] [SPIRES].ADSGoogle Scholar
  36. [36]
    T. Kashti and E. Waxman, Flavoring astrophysical neutrinos: flavor ratios depend on energy, Phys. Rev. Lett. 95 (2005) 181101 [astro-ph/0507599] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    R. Enberg, M.H. Reno and I. Sarcevic, Prompt neutrino fluxes from atmospheric charm, Phys. Rev. D 78 (2008) 043005 [arXiv:0806.0418] [SPIRES].ADSGoogle Scholar
  38. [38]
    S. Choubey and W. Rodejohann, Flavor composition of UHE neutrinos at source and at neutrino telescopes, Phys. Rev. D 80 (2009) 113006 [arXiv:0909.1219] [SPIRES].ADSGoogle Scholar
  39. [39]
    L. Anchordoqui and F. Halzen, IceHEP high energy physics at the South Pole, Annals Phys. 321 (2006) 2660 [hep-ph/0510389] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  40. [40]
    J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa and T.J. Weiler, Measuring flavor ratios of high-energy astrophysical neutrinos, Phys. Rev. D 68 (2003) 093005 [hep-ph/0307025] [SPIRES].ADSGoogle Scholar
  41. [41]
    C. Giunti and C.W. Kim, Fundamentals of neutrino physics and astrophysics, Oxford University Press, Oxford U.K. (2007) [SPIRES].CrossRefGoogle Scholar
  42. [42]
    R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, Ultrahigh-energy neutrino interactions, Astropart. Phys. 5 (1996) 81 [hep-ph/9512364] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
  45. [45]
    A. Connolly, The radio Cherenkov technique for ultra-high energy neutrino detection, Nucl. Instrum. Meth. A 595 (2008) 260 [arXiv:0809.3669] [SPIRES].ADSGoogle Scholar
  46. [46]
    IceCube collaboration, R. Abbasi et al., Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy, Astropart. Phys. 33 (2010) 277 [arXiv:0909.2629] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    L.A. Anchordoqui et al., Probing Planck scale physics with IceCube, Phys. Rev. D 72 (2005) 065019 [hep-ph/0506168] [SPIRES].ADSGoogle Scholar
  48. [48]
    E. Waxman, Astrophysical sources of high energy neutrinos, Nucl. Phys. Proc. Suppl. 118 (2003) 353 [astro-ph/0211358] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    J.K. Becker and P.L. Biermann, Neutrinos from active black holes, sources of ultra high energy cosmic rays, Astropart. Phys. 31 (2009) 138 [arXiv:0805.1498] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    C.A. Arguelles, M. Bustamante and A.M. Gago, IceCube expectations for two high-energy neutrino production models at active galactic nuclei, JCAP 12 (2010) 005 [arXiv:1008.1396] [SPIRES].ADSGoogle Scholar
  51. [51]
    Pierre Auger Observatory collaboration, P. Abreu et al., Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter, Astropart. Phys. 34 (2010) 314 [arXiv:1009.1855] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    IceCube collaboration, R. Abbasi et al., The first search for extremely-high energy cosmogenic neutrinos with the IceCube neutrino observatory, Phys. Rev. D 82 (2010) 072003 [arXiv:1009.1442] [SPIRES].ADSGoogle Scholar
  53. [53]
    A. Ishihara, Searches for the highest energy neutrino with IceCube, talk presented at COSMO/CosPA 2010, September 27–October 1, Tokyo, Japan (2010).Google Scholar
  54. [54]
    The ANITA collaboration, P.W. Gorham et al., Observational constraints on the ultra-high energy cosmic neutrino flux from the second flight of the ANITA experiment, Phys. Rev. D 82 (2010) 022004 [arXiv:1003.2961] [SPIRES].ADSGoogle Scholar
  55. [55]
    Pierre Auger collaboration, J. Abraham et al., Limit on the diffuse flux of ultra-high energy tau neutrinos with the surface detector of the Pierre Auger Observatory, Phys. Rev. D 79 (2009) 102001 [arXiv:0903.3385] [SPIRES].ADSGoogle Scholar
  56. [56]
    I. Kravchenko et al., RICE limits on the diffuse ultra-high energy neutrino flux, Phys. Rev. D 73 (2006) 082002 [astro-ph/0601148] [SPIRES].ADSGoogle Scholar
  57. [57]
    S. Yoshida, IceCube high-energy neutrino astrophysics: where we are and where we go, talk presented at the 2010 Autumn Meeting of The Physical Society of Japan, Semptember 23–26, Kitakyushu, Japan (2010).Google Scholar
  58. [58]
    T.M. f. t.I. Collaboration, IceCube and searches for astrophysical sources, arXiv:1012.0881 [SPIRES].
  59. [59]
    K. Kotera, D. Allard and A.V. Olinto, Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV, JCAP 10 (2010) 013 [arXiv:1009.1382] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • M. Bustamante
    • 1
    • 2
    Email author
  • A. M. Gago
    • 1
  • J. Jones Pérez
    • 3
    • 4
  1. 1.Sección Física, Departamento de CienciasPontificia Universidad Católica del PerúLimaPeru
  2. 2.Theoretical Physics DepartmentFermi National Accelerator LaboratoryBataviaU.S.A.
  3. 3.Departament de Física Teòrica and IFICUniversitat de València-CSICBurjassotSpain
  4. 4.INFN, Laboratori Nazionali di FrascatiFrascatiItaly

Personalised recommendations