Skip to main content
Log in

Dilepton and four-lepton signals at the LHC in the Littlest Higgs model with T-parity violation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the presence of the T-parity violatingWess-Zumino-Witten (WZW) anomaly term, the otherwise stable heavy photon AH in the Littlest Higgs model with T-parity (LHT) decays to either Standard Model (SM) gauge boson pairs, or to SM fermions via loop diagrams. We make a detailed study of the collider signatures where the A H can be reconstructed from invariant mass peaks in the opposite sign same flavor dilepton or the four-lepton channel. This enables us to obtain information about the fundamental symmetry breaking scale f in the LHT and thereby the low-lying mass spectrum of the theory. In addition, indication of the presence of the WZW term gives us hints of the possible UV completion of the LHT via strong dynamics. The crucial observation is that the sum of all production processes of heavy T-odd quark pairs has a sizeable cross-section at the LHC and these T-odd particles eventually all cascade decay down to the heavy photon A H . We show that for certain regions of the parameter space with either a small f of around 500GeV or relatively light T-odd quarks with a mass of around 400GeV, one can reconstruct the A H even at the early LHC run with √s = 10TeV and a modest integrated luminosity of 200 pb−1. At √s = 14TeV and with an integrated luminosity of 30 fb−1, it is possible to cover a large part of the typical parameter space of the LHT, with the scale f up to 1.5TeV and with T-odd quark masses almost up to 1TeV. In this region of the parameter space, the mass of the reconstructed A H ranges from 66GeV to 230GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020 [hep-ph/0202089] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. M. Schmaltz and D. Tucker-Smith, Little Higgs Review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [SPIRES].

    Article  ADS  Google Scholar 

  4. M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [SPIRES].

    Article  ADS  Google Scholar 

  5. M.-C. Chen, Models of little Higgs and electroweak precision tests, Mod. Phys. Lett. A 21 (2006) 621 [hep-ph/0601126] [SPIRES].

    ADS  Google Scholar 

  6. E. Accomando et al., Workshop on CP Studies and Non-Standard Higgs Physics, hep-ph/0608079 [SPIRES].

  7. R. Barbieri and A. Strumia, The ‘LEP paradox’, hep-ph/0007265 [SPIRES].

  8. R. Barbieri and A. Strumia, What is the limit on the Higgs mass?, Phys. Lett. B 462 (1999) 144 [hep-ph/9905281] [SPIRES].

    ADS  Google Scholar 

  9. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [SPIRES].

    ADS  Google Scholar 

  10. N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Big corrections from a little Higgs, Phys. Rev. D 67 (2003) 115002 [hep-ph/0211124] [SPIRES].

    ADS  Google Scholar 

  12. J.L. Hewett, F.J. Petriello and T.G. Rizzo, Constraining the littlest Higgs, JHEP 10 (2003) 062 [hep-ph/0211218] [SPIRES].

    Article  ADS  Google Scholar 

  13. C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Variations of little Higgs models and their electroweak constraints, Phys. Rev. D 68 (2003) 035009 [hep-ph/0303236] [SPIRES].

    ADS  Google Scholar 

  14. M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [SPIRES].

    ADS  Google Scholar 

  15. M.-C. Chen and S. Dawson, One-loop radiative corrections to the ρ parameter in the littlest Higgs model, Phys. Rev. D 70 (2004) 015003 [hep-ph/0311032] [SPIRES].

    ADS  Google Scholar 

  16. W. Kilian and J. Reuter, The low-energy structure of little Higgs models, Phys. Rev. D 70 (2004) 015004 [hep-ph/0311095] [SPIRES].

    ADS  Google Scholar 

  17. G. Marandella, C. Schappacher and A. Strumia, Little-Higgs corrections to precision data after LEP2, Phys. Rev. D 72 (2005) 035014 [hep-ph/0502096] [SPIRES].

    ADS  Google Scholar 

  18. H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].

    Article  ADS  Google Scholar 

  19. H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [SPIRES].

    Article  ADS  Google Scholar 

  21. J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T-parity, Phys. Rev. D 71 (2005) 035016 [hep-ph/0411264] [SPIRES].

    ADS  Google Scholar 

  22. J. Hubisz, P. Meade, A. Noble and M. Perelstein, Electroweak precision constraints on the littlest Higgs model with T parity, JHEP 01 (2006) 135 [hep-ph/0506042] [SPIRES].

    Article  ADS  Google Scholar 

  23. C.-R. Chen, K. Tobe and C.P. Yuan, Higgs boson production and decay in little Higgs models with T-parity, Phys. Lett. B 640 (2006) 263 [hep-ph/0602211] [SPIRES].

    ADS  Google Scholar 

  24. M. Asano, S. Matsumoto, N. Okada and Y. Okada, Cosmic positron signature from dark matter in the littlest Higgs model with T-parity, Phys. Rev. D 75 (2007) 063506 [hep-ph/0602157] [SPIRES].

    ADS  Google Scholar 

  25. R.S. Hundi, B. Mukhopadhyaya and A. Nyffeler, Invisible Higgs boson decay in the littlest Higgs model with T-parity, Phys. Lett. B 649 (2007) 280 [hep-ph/0611116] [SPIRES].

    ADS  Google Scholar 

  26. A. Birkedal, A. Noble, M. Perelstein and A. Spray, Little Higgs dark matter, Phys. Rev. D 74 (2006) 035002 [hep-ph/0603077] [SPIRES].

    ADS  Google Scholar 

  27. C.-S. Chen, K. Cheung and T.-C. Yuan, Novel collider signature for little Higgs dark matter models, Phys. Lett. B 644 (2007) 158 [hep-ph/0605314] [SPIRES].

    ADS  Google Scholar 

  28. C.T. Hill and R.J. Hill, Topological Physics of Little Higgs Bosons, Phys. Rev. D 75 (2007) 115009 [hep-ph/0701044] [SPIRES].

    ADS  Google Scholar 

  29. C.T. Hill and R.J. Hill, T-parity violation by anomalies, Phys. Rev. D 76 (2007) 115014 [arXiv:0705.0697] [SPIRES].

    ADS  Google Scholar 

  30. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [SPIRES].

    Article  ADS  Google Scholar 

  33. J.S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [SPIRES].

    Article  ADS  Google Scholar 

  34. C. Csáki, J. Heinonen, M. Perelstein and C. Spethmann, A Weakly Coupled Ultraviolet Completion of the Littlest Higgs with T-parity, Phys. Rev. D 79 (2009) 035014 [arXiv:0804.0622] [SPIRES].

    ADS  Google Scholar 

  35. V. Barger, W.-Y. Keung and Y. Gao, T-Anomaly Induced LHC Signals, Phys. Lett. B 655 (2007) 228 [arXiv:0707.3648] [SPIRES].

    ADS  Google Scholar 

  36. A. Freitas, P. Schwaller and D. Wyler, Consequences of T-parity breaking in the Littlest Higgs model, JHEP 09 (2008) 013 [arXiv:0806.3674] [SPIRES].

    Article  ADS  Google Scholar 

  37. W.-Y. Keung, I. Low and J. Shu, Landau-Yang Theorem and Decays of a Z’ Boson into Two Z Bosons, Phys. Rev. Lett. 101 (2008) 091802 [arXiv:0806.2864] [SPIRES].

    Article  ADS  Google Scholar 

  38. A. Freitas and D. Wyler, Phenomenology of mirror fermions in the littlest Higgs model with T-parity, JHEP 11 (2006) 061 [hep-ph/0609103] [SPIRES].

    Article  ADS  Google Scholar 

  39. A. Belyaev, C.-R. Chen, K. Tobe and C.P. Yuan, Phenomenology of littlest Higgs model with T-parity: including effects of T-odd fermions, Phys. Rev. D 74 (2006) 115020 [hep-ph/0609179] [SPIRES].

    ADS  Google Scholar 

  40. C.O. Dib, R. Rosenfeld and A. Zerwekh, Double Higgs production and quadratic divergence cancellation in little Higgs models with T parity, JHEP 05 (2006) 074 [hep-ph/0509179] [SPIRES].

    Article  ADS  Google Scholar 

  41. L. Wang, W. Wang, J.M. Yang and H. Zhang, Production of h t anti-t and h t anti-T in littlest Higgs model with T-parity, Phys. Rev. D 75 (2007) 074006 [hep-ph/0609200] [SPIRES].

    ADS  Google Scholar 

  42. M.S. Carena, J. Hubisz, M. Perelstein and P. Verdier, Collider signature of T-quarks, Phys. Rev. D 75 (2007) 091701 [hep-ph/0610156] [SPIRES].

    ADS  Google Scholar 

  43. Q.-H. Cao, C.S. Li and C.P. Yuan, Impact of single-top measurement to littlest Higgs model with T-parity, Phys. Lett. B 668 (2008) 24 [hep-ph/0612243] [SPIRES].

    ADS  Google Scholar 

  44. S. Matsumoto, M.M. Nojiri and D. Nomura, Hunting for the top partner in the littlest Higgs model with T-parity at the LHC, Phys. Rev. D 75 (2007) 055006 [hep-ph/0612249] [SPIRES].

    ADS  Google Scholar 

  45. D. Choudhury and D.K. Ghosh, LHC signals of T-odd heavy quarks in the littlest Higgs model, JHEP 08 (2007) 084 [hep-ph/0612299] [SPIRES].

    Article  ADS  Google Scholar 

  46. Q.-H. Cao and C.-R. Chen, Signatures of Extra Gauge Bosons in the Littlest Higgs Model with T-parity at Future Colliders, Phys. Rev. D 76 (2007) 075007 [arXiv:0707.0877] [SPIRES].

    ADS  Google Scholar 

  47. S. Matsumoto, T. Moroi and K. Tobe, Testing the Littlest Higgs Model with T-parity at the Large Hadron Collider, Phys. Rev. D 78 (2008) 055018 [arXiv:0806.3837] [SPIRES].

    ADS  Google Scholar 

  48. G. Cacciapaglia, S.R. Choudhury, A. Deandrea, N. Gaur and M. Klasen, Dileptonic signatures of T-odd quarks at the LHC, JHEP 03 (2010) 059 [arXiv:0911.4630] [SPIRES].

    Article  Google Scholar 

  49. G. Cacciapaglia, A. Deandrea, S.R. Choudhury and N. Gaur, T-parity odd heavy leptons at LHC, Phys. Rev. D 81 (2010) 075005 [arXiv:0911.4632] [SPIRES].

    ADS  Google Scholar 

  50. P. Meade and M. Reece, Top partners at the LHC: Spin and mass measurement, Phys. Rev. D 74 (2006) 015010 [hep-ph/0601124] [SPIRES].

    ADS  Google Scholar 

  51. L.-T. Wang and I. Yavin, Spin Measurements in Cascade Decays at the LHC, JHEP 04 (2007) 032 [hep-ph/0605296] [SPIRES].

    Article  ADS  Google Scholar 

  52. C.-S. Chen, K. Cheung and T.-C. Yuan, Novel collider signature for little Higgs dark matter models, Phys. Lett. B 644 (2007) 158 [hep-ph/0605314] [SPIRES].

    ADS  Google Scholar 

  53. M.M. Nojiri and M. Takeuchi, The study of sq L sq L production at LHC in the l ± l ± channel and sensitivity to other models, Phys. Rev. D 76 (2007) 015009 [hep-ph/0701190] [SPIRES].

    ADS  Google Scholar 

  54. C. Kilic, L.-T. Wang and I. Yavin, On the Existence of Angular Correlations in Decays with Heavy Matter Partners, JHEP 05 (2007) 052 [hep-ph/0703085] [SPIRES].

    Article  ADS  Google Scholar 

  55. L. Wang, W. Wang, J.M. Yang and H. Zhang, Higgs-pair Production in Littlest Higgs Model with T-parity, Phys. Rev. D 76 (2007) 017702 [arXiv:0705.3392] [SPIRES].

    ADS  Google Scholar 

  56. A. Datta, P. Dey, S.K. Gupta, B. Mukhopadhyaya and A. Nyffeler, Distinguishing the Littlest Higgs model with T-parity from supersymmetry at the LHC using trileptons, Phys. Lett. B 659 (2008) 308 [arXiv:0708.1912] [SPIRES].

    ADS  Google Scholar 

  57. J. Hubisz, J. Lykken, M. Pierini and M. Spiropulu, Missing energy look-alikes with 100 pb −1 at the LHC, Phys. Rev. D 78 (2008) 075008 [arXiv:0805.2398] [SPIRES].

    ADS  Google Scholar 

  58. A. Belyaev et al., Dictionary of LHC Signatures, Pramana 72 (2009) 229 [arXiv:0806.2838] [SPIRES].

    Article  ADS  Google Scholar 

  59. B. Bhattacherjee, A. Kundu, S.K. Rai and S. Raychaudhuri, Multijet Discriminators for New Physics in Leptonic Signals at the LHC, Phys. Rev. D 81 (2010) 035021 [arXiv:0910.4082] [SPIRES].

    ADS  Google Scholar 

  60. A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].

  61. A. Freitas, P. Schwaller and D. Wyler, A CalcHEP model file for the Littlest Higgs model with broken T-parity, http://www.itp.uzh.ch/∼pedro/lht/.

  62. S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [SPIRES].

    ADS  Google Scholar 

  63. J. Gasser and H. Leutwyler, Chiral Perturbation Theory To One Loop, Ann. Phys. 158 (1984) 142 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  64. J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].

    Article  ADS  Google Scholar 

  65. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. J.S. Dowker and R. Critchley, Effective Lagrangian and Energy Momentum Tensor in de Sitter Space, Phys. Rev. D 13 (1976) 3224 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  67. S.W. Hawking, Zeta Function Regularization of Path Integrals in Curved Space-Time, Commun. Math. Phys. 55 (1977) 133 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  68. A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [SPIRES].

    Article  ADS  Google Scholar 

  69. Vista/Sleuth Global Search for New Physics in 2.0 fb−1of\( p\overline p \)Collisions at √s = 1.96TeV, http://www-cdf.fnal.gov/physics/exotic/r2a/20080228.vista sleuth/publicPage.html.

  70. T. Goto, Y. Okada and Y. Yamamoto, Ultraviolet divergences of flavor changing amplitudes in the littlest Higgs model with T-parity, Phys. Lett. B 670 (2009) 378 [arXiv:0809.4753] [SPIRES].

    ADS  Google Scholar 

  71. F. del Aguila, J.I. Illana and M.D. Jenkins, Precise limits from lepton flavour violating processes on the Littlest Higgs model with T-parity, JHEP 01 (2009) 080 [arXiv:0811.2891] [SPIRES].

    Article  Google Scholar 

  72. M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC Processes in the Littlest Higgs Model with T-Parity: a 2009 Look, arXiv:0906.5454 [SPIRES].

  73. H.L. Lai et al., Global QCD analysis and the CTEQ parton distributions, Phys. Rev. D 51 (1995) 4763 [hep-ph/9410404] [SPIRES].

    ADS  Google Scholar 

  74. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].

    Article  ADS  Google Scholar 

  75. D. Stump et al., Inclusive jet production, parton distributions and the search for new physics, JHEP 10 (2003) 046 [hep-ph/0303013] [SPIRES].

    Article  ADS  Google Scholar 

  76. P. Langacker, The Physics of Heavy ZGauge Bosons, Rev. Mod. Phys. 81 (2008) 1199 [arXiv:0801.1345] [SPIRES].

    Article  ADS  Google Scholar 

  77. E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Z’ models: present bounds and early LHC reach, arXiv:0911.1450 [SPIRES].

  78. P. Langacker, Z’ Physics at the LHC, arXiv:0911.4294 [SPIRES].

  79. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  80. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  81. L3 collaboration, P. Achard et al., Z boson pair production at LEP, Phys. Lett. B 572 (2003) 133 [hep-ex/0308013] [SPIRES].

    ADS  Google Scholar 

  82. CDF collaboration, T. Aaltonen et al., Search for New Heavy Particles Decaying to Z 0 Z 0eeee in \( p - \overline p \) Collisions at √s = 1.96TeV, Phys. Rev. D 78 (2008) 012008 [arXiv:0801.1129] [SPIRES].

    ADS  Google Scholar 

  83. H.-S. Lee, Dileptons and four leptons at Z’ resonance in the early stage of the LHC, Phys. Lett. B 674 (2009) 87 [arXiv:0812.1854] [SPIRES].

    ADS  Google Scholar 

  84. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  85. J. Alwall et al., A Les Houches Interface for BSM Generators, arXiv:0712.3311 [SPIRES].

  86. P.Z. Skands et al., SUSY Les Houches Accord: Interfacing SUSY Spectrum Calculators, Decay Packages and Event Generators, JHEP 07 (2004) 036 [hep-ph/0311123] [SPIRES].

    Article  ADS  Google Scholar 

  87. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    Article  ADS  Google Scholar 

  88. M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches Accord PDFs (LHAPDF) and Lhaglue, hep-ph/0508110 [SPIRES] http://projects.hepforge.org/lhapdf/.

  89. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [SPIRES].

    Article  ADS  Google Scholar 

  90. S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to t anti-t + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [SPIRES].

    Article  ADS  Google Scholar 

  91. S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J. C 59 (2009) 625 [arXiv:0810.0452] [SPIRES].

    Article  ADS  Google Scholar 

  92. G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD Backgrounds in Higgs Boson Analyses at the LHC: A Study of pp\( t\overline t \) + 2 jets at Next-To-Leading Order, 1002.4009 [SPIRES].

  93. J. Huston, LO, NLO, LO* and jet algorithms, 1001.2581 [SPIRES].

  94. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment — Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].

  95. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  96. B. Mellado, private communication.

  97. J.M. Campbell et al., Normalizing Weak Boson Pair Production at the Large Hadron Collider, Phys. Rev. D 80 (2009) 054023 [arXiv:0906.2500] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayan Mukhopadhyay.

Additional information

ArXiv ePrint: 0912.0217

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, S., Mukhopadhyaya, B. & Nyffeler, A. Dilepton and four-lepton signals at the LHC in the Littlest Higgs model with T-parity violation. J. High Energ. Phys. 2010, 1 (2010). https://doi.org/10.1007/JHEP05(2010)001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)001

Keywords

Navigation