Advertisement

One-loop QCD contributions to differential cross-sections for Higgs production at N3LO

  • Charalampos AnastasiouEmail author
  • Caterina Specchia
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

We present one-loop contributions to the fully differential Higgs boson gluon-fusion cross-section for Higgs production via gluon fusion. Our results constitute a necessary ingredient of a complete N3LO determination of the cross-section. We perform our computation using a subtraction method for the treatment of soft and collinear singularities. We identify the infrared divergent parts in terms of universal splitting and eikonal functions, and demonstrate how phase-space integrations yield poles (up to 1/ε6) in the dimensional regulator ε = (4 − d)/2. We compute the coefficients of the ε expansion, including the finite part numerically. As a demonstration of our numerical implementation, we present the corrections at N3LO due to one-loop amplitudes in the rapidity and transverse momentum of the Higgs boson.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3 LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N 3 LO+NNLL with small-R resummation, JHEP 04 (2016) 049 [arXiv:1511.02886] [INSPIRE].Google Scholar
  4. [4]
    X. Chen, J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD, Phys. Rev. D 92 (2015) 074032 [arXiv:1508.02684] [INSPIRE].Google Scholar
  8. [8]
    X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    F. Dulat, B. Mistlberger and A. Pelloni, Precision predictions at N 3 LO for the Higgs boson rapidity distribution at the LHC, Phys. Rev. D 99 (2019) 034004 [arXiv:1810.09462] [INSPIRE].Google Scholar
  10. [10]
    F. Dulat, S. Lionetti, B. Mistlberger, A. Pelloni and C. Specchia, Higgs-differential cross section at NNLO in dimensional regularisation, JHEP 07 (2017) 017 [arXiv:1704.08220] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    F. Dulat, B. Mistlberger and A. Pelloni, Differential Higgs production at N 3 LO beyond threshold, JHEP 01 (2018) 145 [arXiv:1710.03016] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    L. Cieri, X. Chen, T. Gehrmann, E.W.N. Glover and A. Huss, Higgs boson production at the LHC using the q T subtraction formalism at N 3 LO QCD, JHEP 02 (2019) 096 [arXiv:1807.11501] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    C. Duhr, T. Gehrmann and M. Jaquier, Two-loop splitting amplitudes and the single-real contribution to inclusive Higgs production at N 3 LO, JHEP 02 (2015) 077 [arXiv:1411.3587] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α S3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
  15. [15]
    K.G. Chetyrkin, J.H. Kühn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].
  16. [16]
    Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].
  17. [17]
    D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563 (1999) 477 [hep-ph/9903515] [INSPIRE].
  18. [18]
    S.D. Badger and E.W.N. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE].
  19. [19]
    S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  20. [20]
    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].
  21. [21]
    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].CrossRefzbMATHGoogle Scholar
  22. [22]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].CrossRefzbMATHGoogle Scholar
  23. [23]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett. B 302 (1993) 299 [Erratum ibid. B 318 (1993) 649] [hep-ph/9212308] [INSPIRE].
  24. [24]
    Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The Infrared behavior of QCD cross-sections at next-to-next-to leading order, PoS(corfu98)031 [hep-ph/9903525] [INSPIRE].
  25. [25]
    Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].
  26. [26]
    Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B 447 (1995) 465 [hep-ph/9503236] [INSPIRE].
  27. [27]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
  28. [28]
    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop ggg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].
  29. [29]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order alpha-S 4, Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].
  32. [32]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsETH ZürichZürichSwitzerland

Personalised recommendations