Phases and stability of non-uniform black strings

  • Roberto Emparan
  • Raimon Luna
  • Marina Martínez
  • Ryotaku Suzuki
  • Kentaro Tanabe
Open Access
Regular Article - Theoretical Physics


We construct solutions of non-uniform black strings in dimensions from D ≈ 9 all the way up to D = ∞, and investigate their thermodynamics and dynamical stability. Our approach employs the large-D perturbative expansion beyond the leading order, including corrections up to 1/D4. Combining both analytical techniques and relatively simple numerical solution of ODEs, we map out the ranges of parameters in which non-uniform black strings exist in each dimension and compute their thermodynamics and quasinormal modes with accuracy. We establish with very good precision the existence of Sorkin’s critical dimension and we prove that not only the thermodynamic stability, but also the dynamic stability of the solutions changes at it.


Black Holes Black Holes in String Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material (271 kb)
ESM 1 (ZIP 271 kb)


  1. [1]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. Gregory and R. Laflamme, The Instability of charged black strings and p-branes, Nucl. Phys. B 428 (1994) 399 [hep-th/9404071] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S.S. Gubser, On nonuniform black branes, Class. Quant. Grav. 19 (2002) 4825 [hep-th/0110193] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Wiseman, Static axisymmetric vacuum solutions and nonuniform black strings, Class. Quant. Grav. 20 (2003) 1137 [hep-th/0209051] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    B. Kol, The Phase transition between caged black holes and black strings: A Review, Phys. Rept. 422 (2006) 119 [hep-th/0411240] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    T. Harmark, V. Niarchos and N.A. Obers, Instabilities of black strings and branes, Class. Quant. Grav. 24 (2007) R1 [hep-th/0701022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    G.T. Horowitz ed., Black holes in higher dimensions, Cambridge University Press (2012).Google Scholar
  8. [8]
    M. Kalisch, Numerical construction and critical behavior of Kaluza-Klein black holes, Ph.D. Thesis, Jena University (2018) [arXiv:1802.06596] [INSPIRE].
  9. [9]
    M. Rozali and A. Vincart-Emard, On Brane Instabilities in the Large D Limit, JHEP 08 (2016) 166 [arXiv:1607.01747] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    O.J.C. Dias, J.E. Santos and B. Way, Lattice Black Branes: Sphere Packing in General Relativity, arXiv:1712.07663 [INSPIRE].
  11. [11]
    E. Sorkin, A critical dimension in the black string phase transition, Phys. Rev. Lett. 93 (2004) 031601 [hep-th/0402216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M.-I. Park, The Final state of black strings and p-branes and the Gregory-Laflamme instability, Class. Quant. Grav. 22 (2005) 2607 [hep-th/0405045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    B. Kleihaus, J. Kunz and E. Radu, New nonuniform black string solutions, JHEP 06 (2006) 016 [hep-th/0603119] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    E. Sorkin, Non-uniform black strings in various dimensions, Phys. Rev. D 74 (2006) 104027 [gr-qc/0608115] [INSPIRE].
  15. [15]
    P. Figueras, K. Murata and H.S. Reall, Stable non-uniform black strings below the critical dimension, JHEP 11 (2012) 071 [arXiv:1209.1981] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Kalisch and M. Ansorg, Highly Deformed Non-uniform Black Strings in Six Dimensions, in proceedings of 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG14), 4 volumes, Rome, Italy, July 12-18, 2015, vol. 2, pp. 1799-1804 (2017) [ 0185] [arXiv:1509.03083] [INSPIRE].
  17. [17]
    M. Kalisch and M. Ansorg, Pseudo-spectral construction of non-uniform black string solutions in five and six spacetime dimensions, Class. Quant. Grav. 33 (2016) 215005 [arXiv:1607.03099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Kalisch, S. Möckel and M. Ammon, Critical behavior of the black hole/black string transition, JHEP 08 (2017) 049 [arXiv:1706.02323] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    L. Lehner and F. Pretorius, Black Strings, Low Viscosity Fluids and Violation of Cosmic Censorship, Phys. Rev. Lett. 105 (2010) 101102 [arXiv:1006.5960] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    R. Emparan, R. Suzuki and K. Tanabe, Evolution and End Point of the Black String Instability: Large D Solution, Phys. Rev. Lett. 115 (2015) 091102 [arXiv:1506.06772] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    U. Miyamoto, Non-linear perturbation of black branes at large D, JHEP 06 (2017) 033 [arXiv:1705.00486] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    V. Asnin, D. Gorbonos, S. Hadar, B. Kol, M. Levi and U. Miyamoto, High and Low Dimensions in The Black Hole Negative Mode, Class. Quant. Grav. 24 (2007) 5527 [arXiv:0706.1555] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    B. Kol and E. Sorkin, On black-brane instability in an arbitrary dimension, Class. Quant. Grav. 21 (2004) 4793 [gr-qc/0407058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    R. Emparan, R. Suzuki and K. Tanabe, Decoupling and non-decoupling dynamics of large D black holes, JHEP 07 (2014) 113 [arXiv:1406.1258] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Emparan, R. Suzuki and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP 04 (2015) 085 [arXiv:1502.02820] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    R. Emparan, T. Shiromizu, R. Suzuki, K. Tanabe and T. Tanaka, Effective theory of Black Holes in the 1/D expansion, JHEP 06 (2015) 159 [arXiv:1504.06489] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    R. Suzuki and K. Tanabe, Non-uniform black strings and the critical dimension in the 1/D expansion, JHEP 10 (2015) 107 [arXiv:1506.01890] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    R. Emparan, K. Izumi, R. Luna, R. Suzuki and K. Tanabe, Hydro-elastic Complementarity in Black Branes at large D, JHEP 06 (2016) 117 [arXiv:1602.05752] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    S. Bhattacharyya, M. Mandlik, S. Minwalla and S. Thakur, A Charged Membrane Paradigm at Large D, JHEP 04 (2016) 128 [arXiv:1511.03432] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    Y. Dandekar, S. Mazumdar, S. Minwalla and A. Saha, Unstable ‘black branes’ from scaled membranes at large D, JHEP 12 (2016) 140 [arXiv:1609.02912] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    Y. Dandekar, A. De, S. Mazumdar, S. Minwalla and A. Saha, The large D black hole Membrane Paradigm at first subleading order, JHEP 12 (2016) 113 [arXiv:1607.06475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    C.P. Herzog and Y. Kim, The Large Dimension Limit of a Small Black Hole Instability in Anti-de Sitter Space, JHEP 02 (2018) 167 [arXiv:1711.04865] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    T. Harmark and N.A. Obers, New phase diagram for black holes and strings on cylinders, Class. Quant. Grav. 21 (2004) 1709 [hep-th/0309116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    T. Harmark, Small black holes on cylinders, Phys. Rev. D 69 (2004) 104015 [hep-th/0310259] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    D. Gorbonos and B. Kol, A Dialogue of multipoles: Matched asymptotic expansion for caged black holes, JHEP 06 (2004) 053 [hep-th/0406002] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    H. Kudoh and T. Wiseman, Connecting black holes and black strings, Phys. Rev. Lett. 94 (2005) 161102 [hep-th/0409111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    M. Headrick, S. Kitchen and T. Wiseman, A New approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    T. Harmark and N.A. Obers, Phase structure of black holes and strings on cylinders, Nucl. Phys. B 684 (2004) 183 [hep-th/0309230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    B. Kol, Topology change in general relativity and the black hole black string transition, JHEP 10 (2005) 049 [hep-th/0206220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    B. Kol and T. Wiseman, Evidence that highly nonuniform black strings have a conical waist, Class. Quant. Grav. 20 (2003) 3493 [hep-th/0304070] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Emparan and N. Haddad, Self-similar critical geometries at horizon intersections and mergers, JHEP 10 (2011) 064 [arXiv:1109.1983] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  2. 2.Departament de Física Quàntica i Astrofísica, Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain
  3. 3.Institute for Theoretical PhysicsKU LeuvenLeuvenBelgium
  4. 4.Department of PhysicsOsaka City UniversityOsakaJapan
  5. 5.Department of PhysicsRikkyo UniversityTokyoJapan

Personalised recommendations