On scalar and vector fields coupled to the energy-momentum tensor

  • Jose Beltrán Jiménez
  • Jose A. R. Cembranos
  • Jose M. Sánchez Velázquez
Open Access
Regular Article - Theoretical Physics
  • 31 Downloads

Abstract

We consider theories for scalar and vector fields coupled to the energy-momentum tensor. Since these fields also carry a non-trivial energy-momentum tensor, the coupling prescription generates self-interactions. In analogy with gravity theories, we build the action by means of an iterative process that leads to an infinite series, which can be resumed as the solution of a set of differential equations. We show that, in some particular cases, the equations become algebraic and that is also possible to find solutions in the form of polynomials. We briefly review the case of the scalar field that has already been studied in the literature and extend the analysis to the case of derivative (disformal) couplings. We then explore theories with vector fields, distinguishing between gauge-and non-gauge-invariant couplings. Interactions with matter are also considered, taking a scalar field as a proxy for the matter sector. We also discuss the ambiguity introduced by superpotential (boundary) terms in the definition of the energy-momentum tensor and use them to show that it is also possible to generate Galileon-like interactions with this procedure. We finally use collider and astrophysical observations to set constraints on the dimensionful coupling which characterises the phenomenology of these models.

Keywords

Classical Theories of Gravity Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 17 (2014) 4 [arXiv:1403.7377] [INSPIRE].CrossRefMATHGoogle Scholar
  2. [2]
    T. Ortín, Gravity and strings, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge (2004).Google Scholar
  3. [3]
    S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023] [INSPIRE].
  4. [4]
    T. Padmanabhan, From gravitons to gravity: myths and reality, Int. J. Mod. Phys. D 17 (2008) 367 [gr-qc/0409089] [INSPIRE].
  5. [5]
    L.M. Butcher, M. Hobson and A. Lasenby, Bootstrapping gravity: a consistent approach to energy-momentum self-coupling, Phys. Rev. D 80 (2009) 084014 [arXiv:0906.0926] [INSPIRE].
  6. [6]
    S. Deser, Gravity from self-interaction redux, Gen. Rel. Grav. 42 (2010) 641 [arXiv:0910.2975] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    C. Barceló, R. Carballo-Rubio and L.J. Garay, Unimodular gravity and general relativity from graviton self-interactions, Phys. Rev. D 89 (2014) 124019 [arXiv:1401.2941] [INSPIRE].
  8. [8]
    R.H. Kraichnan, Special-relativistic derivation of generally covariant gravitation theory, Phys. Rev. 98 (1955) 1118 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. Deser and L. Halpern, Self-coupled scalar gravitation, Gen. Rel. Grav. 1 (1970) 131 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    T.P. Singh and T. Padmanabhan, An attempt to explain the smallness of the cosmological constant, Int. J. Mod. Phys. A 3 (1988) 1593 [INSPIRE].
  11. [11]
    M. Sami and T. Padmanabhan, A viable cosmology with a scalar field coupled to the trace of the stress tensor, Phys. Rev. D 67 (2003) 083509 [Erratum ibid. D 67 (2003) 109901] [hep-th/0212317] [INSPIRE].
  12. [12]
    P.G.O. Freund and Y. Nambu, Scalar field coupled to the trace of the energy-momentum tensor, Phys. Rev. 174 (1968) 1741 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F.J. Belinfante, On the spin angular momentum of mesons, Physica 6 (1939) 887.ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    F.J. Belinfante, On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields, Physica 7 (1940) 449.ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    L. Rosenfeld, Sur le tenseur dimpulsion-énergy, Mem. Acad. Roy. Belg. Sci. 18 (1940) 1.Google Scholar
  16. [16]
    M. Gotay and J.E. Marsden, Stress-energy-momentum tensors and the Belinfante-Rosenfeld formula, Contemp. Math. 132 (2001).Google Scholar
  17. [17]
    J.D. Bekenstein, Relation between physical and gravitational geometry, Phys. Rev. D 48 (1993) 3641.Google Scholar
  18. [18]
    S. Deser and B. Laurent, Gravitation without self-interaction, Annals Phys. 50 (1968) 76 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R.M. Wald, Spin-2 fields and general covariance, Phys. Rev. D 33 (1986) 3613 [INSPIRE].
  20. [20]
    M.P. Hertzberg, Gravitation, causality and quantum consistency, arXiv:1610.03065 [INSPIRE].
  21. [21]
    M.P. Hertzberg and M. Sandora, General relativity from causality, JHEP 09 (2017) 119 [arXiv:1702.07720] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    D. Bai and Y.-H. Xing, On the uniqueness of ghost-free special gravity, Commun. Theor. Phys. 68 (2017) 329 [arXiv:1702.05756] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    D. Bai and Y.-H. Xing, Special gravity as alternatives for interacting massless gravitons, arXiv:1610.00241 [INSPIRE].
  24. [24]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
  25. [25]
    C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, Imperfect dark energy from kinetic gravity braiding, JCAP 10 (2010) 026 [arXiv:1008.0048] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Tasinato, Cosmic acceleration from Abelian symmetry breaking, JHEP 04 (2014) 067 [arXiv:1402.6450] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    L. Heisenberg, Generalization of the Proca action, JCAP 05 (2014) 015 [arXiv:1402.7026] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Allys, P. Peter and Y. Rodriguez, Generalized Proca action for an Abelian vector field, JCAP 02 (2016) 004 [arXiv:1511.03101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J. Beltran Jimenez and L. Heisenberg, Derivative self-interactions for a massive vector field, Phys. Lett. B 757 (2016) 405 [arXiv:1602.03410] [INSPIRE].
  30. [30]
    C. Deffayet, A.E. Gümrükçüoğlu, S. Mukohyama and Y. Wang, A no-go theorem for generalized vector Galileons on flat spacetime, JHEP 04 (2014) 082 [arXiv:1312.6690] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C. Deffayet, S. Mukohyama and V. Sivanesan, On p-form theories with gauge invariant second order field equations, Phys. Rev. D 93 (2016) 085027 [arXiv:1601.01287] [INSPIRE].
  32. [32]
    L. Blanchet, A class of non-metric couplings to gravity, Phys. Rev. Lett. 69 (1992) 559 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    A. Dobado and A.L. Maroto, The dynamics of the Goldstone bosons on the brane, Nucl. Phys. B 592 (2001) 203 [hep-ph/0007100] [INSPIRE].
  34. [34]
    T.E. Clark et al., Colliders and brane vector phenomenology, Phys. Rev. D 78 (2008) 115004 [arXiv:0809.3999] [INSPIRE].
  35. [35]
    T.E. Clark, S.T. Love, M. Nitta, T. ter Veldhuis and C. Xiong, Brane Vector Dynamics from Embedding Geometry, Nucl. Phys. B 810 (2009) 97 [arXiv:0809.1083] [INSPIRE].
  36. [36]
    T.E. Clark et al., Brane vector phenomenology, Phys. Lett. B 671 (2009) 383 [arXiv:0709.4023] [INSPIRE].
  37. [37]
    T.E. Clark, B. Liu, S.T. Love, C. Xiong and T. ter Veldhuis, Higgs decays and brane gravi-vectors, Phys. Rev. D 78 (2008) 075016 [arXiv:0806.1516] [INSPIRE].
  38. [38]
    J.A.R. Cembranos and A.L. Maroto, Disformal scalars as dark matter candidates: Branon phenomenology, Int. J. Mod. Phys. 31 (2016) 1630015 [arXiv:1602.07270] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R. Sundrum, Effective field theory for a three-brane universe, Phys. Rev. D 59 (1999) 085009 [hep-ph/9805471] [INSPIRE].
  40. [40]
    J. Alcaraz, J.A.R. Cembranos, A. Dobado and A.L. Maroto, Limits on the brane fluctuations mass and on the brane tension scale from electron positron colliders, Phys. Rev. D 67 (2003) 075010 [hep-ph/0212269] [INSPIRE].
  41. [41]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane skyrmions and wrapped states, Phys. Rev. D 65 (2002) 026005 [hep-ph/0106322] [INSPIRE].
  42. [42]
    J.A.R. Cembranos, Lagrangianos efectivos en teorias con dimensiones extras, Ph.D. thesis, Universidad Complutense de Madrid, Madrid, Spain (2003).Google Scholar
  43. [43]
    P. Creminelli and A. Strumia, Collider signals of brane fluctuations, Nucl. Phys. B 596 (2001) 125 [hep-ph/0007267] [INSPIRE].
  44. [44]
    T. Kugo and K. Yoshioka, Probing extra dimensions using Nambu-Goldstone bosons, Nucl. Phys. B 594 (2001) 301 [hep-ph/9912496] [INSPIRE].
  45. [45]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE].
  46. [46]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Cosmological and astrophysical limits on brane fluctuations, Phys. Rev. D 68 (2003) 103505 [hep-ph/0307062] [INSPIRE].
  47. [47]
    P. Brax, C. Burrage and A.-C. Davis, Shining light on modifications of gravity, JCAP 10 (2012) 016 [arXiv:1206.1809] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    P. Brax and C. Burrage, Constraining disformally coupled scalar fields, Phys. Rev. D 90 (2014) 104009 [arXiv:1407.1861] [INSPIRE].
  49. [49]
    S. Heinemeyer et al., Toward high precision Higgs-boson measurements at the international linear e + e collider, hep-ph/0511332 [INSPIRE].
  50. [50]
    J.A.R. Cembranos, A. Rajaraman and F. Takayama, CPT violation in the top sector, hep-ph/0512020 [INSPIRE].
  51. [51]
    J.A.R. Cembranos, A. Rajaraman and F. Takayama, Searching for CPT violation in tt production, EPL 82 (2008) 21001 [hep-ph/0609244] [INSPIRE].
  52. [52]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Goldstone bosons and solitons on the brane, hep-ph/0107155 [INSPIRE].
  53. [53]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane skyrmions and wrapped states, Phys. Rev. D 65 (2002) 026005 [hep-ph/0106322] [INSPIRE].
  54. [54]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Living on a brane, hep-ph/0307015 [INSPIRE].
  55. [55]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Some model-independent phenomenological consequences of flexible brane worlds, J. Phys. A 40 (2007) 6631 [hep-ph/0611024] [INSPIRE].
  56. [56]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Branon phenomenology, hep-ph/0512302 [INSPIRE].
  57. [57]
    A. Juste et al., Report of the 2005 Snowmass top/QCD working group, eConf C 0508141 (2005) PLEN0043 [hep-ph/0601112] [INSPIRE].
  58. [58]
    J.A.R. Cembranos et al., Collider signatures of SuperWIMP Warm Dark Matter, hep-ph/0603067 [INSPIRE].
  59. [59]
    J.A.R. Cembranos et al., Gravitino and axino superWIMPs, AIP Conf. Proc. 903 (2007) 591 [hep-ph/0701011] [INSPIRE].
  60. [60]
    ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].
  61. [61]
    ILC collaboration, G. Aarons et al., ILC reference design report. Volume 1Executive summary, arXiv:0712.1950 [INSPIRE].
  62. [62]
    ILC collaboration, G. Aarons et al., ILC reference design report. Volume 4Detectors, arXiv:0712.2356 [INSPIRE].
  63. [63]
    J.A.R. Cembranos, J.H. Montes de Oca Y. and L. Prado, Dark matter and Higgs sector, J. Phys. Conf. Ser. 315 (2011) 012012 [arXiv:1008.4435] [INSPIRE].
  64. [64]
    L3 collaboration, P. Achard et al., Search for branons at LEP, Phys. Lett. B 597 (2004) 145 [hep-ex/0407017] [INSPIRE].
  65. [65]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Branon search in hadronic colliders, Phys. Rev. D 70 (2004) 096001 [hep-ph/0405286] [INSPIRE].
  66. [66]
    J.A.R. Cembranos, R.L. Delgado and A. Dobado, Brane-worlds at the LHC: branons and KK-gravitons, Phys. Rev. D 88 (2013) 075021 [arXiv:1306.4900] [INSPIRE].
  67. [67]
    J.A.R. Cembranos, J.L. Diaz-Cruz and L. Prado, Impact of DM direct searches and the LHC analyses on branon phenomenology, Phys. Rev. D 84 (2011) 083522 [arXiv:1110.0542] [INSPIRE].
  68. [68]
    CMS collaboration, Search for new phenomena in monophoton final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 755 (2016) 102 [arXiv:1410.8812] [INSPIRE].
  69. [69]
    G. Landsberg, Searches for extra spatial dimensions with the CMS detector at the LHC, Mod. Phys. Lett. A 30 (2015) 1540017 [arXiv:1506.00024] [INSPIRE].
  70. [70]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Branon radiative corrections to collider physics and precision observables, Phys. Rev. D 73 (2006) 035008 [hep-ph/0510399] [INSPIRE].
  71. [71]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Dark matter clues in the muon anomalous magnetic moment, Phys. Rev. D 73 (2006) 057303 [hep-ph/0507066] [INSPIRE].
  72. [72]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Phenomenological implications of brane world scenarios with low tension, AIP Conf. Proc. 670 (2003) 235 [hep-ph/0301009] [INSPIRE].
  73. [73]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Branons as dark matter, hep-ph/0402142 [INSPIRE].
  74. [74]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Branon dark matter, hep-ph/0406076 [INSPIRE].
  75. [75]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, A new dark matter candidate in low-tension brane-worlds, hep-ph/0411076 [INSPIRE].
  76. [76]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Branon dark matter: an introduction, astro-ph/0411262 [INSPIRE].
  77. [77]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Dark geometry, Int. J. Mod. Phys. D 13 (2004) 2275 [hep-ph/0405165] [INSPIRE].
  78. [78]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Dark matter from extra dimensions, eConf C 041213 (2004) 1113 [astro-ph/0503622] [INSPIRE].
  79. [79]
    J.A.R. Cembranos et al., New developments in extra-dimensional dark matter, astro-ph/0512569 [INSPIRE].
  80. [80]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Catching photons from extra dimensions, astro-ph/0611911 [INSPIRE].
  81. [81]
    A.L. Maroto, Brane oscillations and the cosmic coincidence problem, Phys. Rev. D 69 (2004) 101304 [hep-ph/0402278] [INSPIRE].
  82. [82]
    J.A.R. Cembranos et al., Indirect signals from braneworlds, arXiv:0708.0235 [INSPIRE].
  83. [83]
    J.A.R. Cembranos et al., Is the CMB cold spot a gate to extra dimensions?, JCAP 10 (2008) 039 [arXiv:0803.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    J.A.R. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP solutions to small scale structure problems, Phys. Rev. Lett. 95 (2005) 181301 [hep-ph/0507150] [INSPIRE].
  85. [85]
    J.A.R. Cembranos, J.L. Feng and L.E. Strigari, Resolving cosmic gamma ray anomalies with dark matter decaying now, Phys. Rev. Lett. 99 (2007) 191301 [arXiv:0704.1658] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J.A.R. Cembranos and L.E. Strigari, Diffuse MeV γ-rays and galactic 511 keV line fro decaying WIMP dark matter, Phys. Rev. D 77 (2008) 123519 [arXiv:0801.0630] [INSPIRE].
  87. [87]
    J.A.R. Cembranos et al., Photon spectra from WIMP annihilation, Phys. Rev. D 83 (2011) 083507 [arXiv:1009.4936] [INSPIRE].
  88. [88]
    J.A.R. Cembranos, A. Cruz-Dombriz, A. Dobado, R. Lineros and A.L. Maroto, Photon spectra from quark generation by WIMPs, AIP Conf. Proc. 1343 (2011) 595 [arXiv:1011.2137] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    J.A.R. Cembranos et al., Fitting formulae for photon spectra from WIMP annihilation, J. Phys. Conf. Ser. 314 (2011) 012063 [arXiv:1012.4473] [INSPIRE].
  90. [90]
    J.A.R. Cembranos et al., Detection of branon dark matter with gamma ray telescopes, Phys. Rev. D 85 (2012) 043505 [arXiv:1111.4448] [INSPIRE].
  91. [91]
    J.A.R. Cembranos, V. Gammaldi and A.L. Maroto, Possible dark matter origin of the gamma ray emission from the galactic center observed by HESS, Phys. Rev. D 86 (2012) 103506 [arXiv:1204.0655] [INSPIRE].
  92. [92]
    J.A.R. Cembranos, V. Gammaldi and A.L. Maroto, Spectral study of the HESS J1745-290 gamma-ray source as dark matter signal, JCAP 04 (2013) 051 [arXiv:1302.6871] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    J.A.R. Cembranos, V. Gammaldi and A.L. Maroto, Neutrino fluxes from dark matter in the HESS J1745-290 source at the Galactic Center, Phys. Rev. D 90 (2014) 043004 [arXiv:1403.6018] [INSPIRE].
  94. [94]
    J.A.R. Cembranos, V. Gammaldi and A.L. Maroto, Antiproton signatures from astrophysical and dark matter sources at the galactic center, JCAP 03 (2015) 041 [arXiv:1410.6689] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    A.L. Maroto, The nature of branon dark matter, Phys. Rev. D 69 (2004) 043509 [hep-ph/0310272] [INSPIRE].
  96. [96]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].
  97. [97]
    L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].
  98. [98]
    M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J.A. Frieman and A.H. Jaffe, Cosmological constraints on pseudoNambu-Goldstone bosons, Phys. Rev. D 45 (1992) 2674 [INSPIRE].
  100. [100]
    J.A.R. Cembranos, Dark matter from R2-gravity, Phys. Rev. Lett. 102 (2009) 141301 [arXiv:0809.1653] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    T. Biswas, J.A.R. Cembranos and J.I. Kapusta, Thermal duality and Hagedorn transition from p-adic strings, Phys. Rev. Lett. 104 (2010) 021601 [arXiv:0910.2274] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  102. [102]
    J.A.R. Cembranos et al., Isotropy theorem for cosmological vector fields, Phys. Rev. D 86 (2012) 021301 [arXiv:1203.6221] [INSPIRE].
  103. [103]
    J.A.R. Cembranos, A. de la Cruz Dombriz and L.O. Garcia, Complete density perturbations in the Jordan-Fierz-Brans-Dicke theory, Phys. Rev. D 88 (2013) 123507 [arXiv:1307.0521] [INSPIRE].
  104. [104]
    I. Ayuso and J.A.R. Cembranos, Non-minimal scalar-tensor theories, arXiv:1411.1653 [INSPIRE].
  105. [105]
    J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, Isotropy theorem for cosmological Yang-Mills theories, Phys. Rev. D 87 (2013) 043523 [arXiv:1212.3201] [INSPIRE].
  106. [106]
    J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareno, Solution to the isotropy problem for cosmological hidden vector models, arXiv:1309.7447 [INSPIRE].
  107. [107]
    J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, Isotropy theorem for arbitrary-spin cosmological fields, JCAP 03 (2014) 042 [arXiv:1311.1402] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  108. [108]
    J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, Cosmological perturbations in coherent oscillating scalar field models, JHEP 03 (2016) 013 [arXiv:1509.08819] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  109. [109]
    J. Beltran Jimenez and T.S. Koivisto, Extended Gauss-Bonnet gravities in Weyl geometry, Class. Quant. Grav. 31 (2014) 135002 [arXiv:1402.1846] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  110. [110]
    J. Beltran Jimenez and T.S. Koivisto, Spacetimes with vector distortion: Inflation from generalised Weyl geometry, Phys. Lett. B 756 (2016) 400 [arXiv:1509.02476] [INSPIRE].
  111. [111]
    J. Beltran Jimenez, L. Heisenberg and T.S. Koivisto, Cosmology for quadratic gravity in generalized Weyl geometry, JCAP 04 (2016) 046 [arXiv:1602.07287] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Instituto de Física Teórica UAM-CSICUniversidad Autónoma de MadridMadridSpain
  2. 2.Departamento de Física FundamentalUniversidad de SalamancaSalamancaSpain
  3. 3.Departamento de Física Teórica and UPARCOSUniversidad Complutense de MadridMadridSpain

Personalised recommendations