Advertisement

Neutrino-electron scattering: general constraints on Z and dark photon models

  • Manfred Lindner
  • Farinaldo S. Queiroz
  • Werner Rodejohann
  • Xun-Jie Xu
Open Access
Regular Article - Theoretical Physics

Abstract

We study the framework of U(1) X models with kinetic mixing and/or mass mixing terms. We give general and exact analytic formulas of fermion gauge interactions and the cross sections of neutrino-electron scattering in such models. Then we derive limits on a variety of U(1) X models that induce new physics contributions to neutrino-electron scattering, taking into account interference between the new physics and Standard Model contributions. Data from TEXONO, CHARM-II and GEMMA are analyzed and shown to be complementary to each other to provide the most restrictive bounds on masses of the new vector bosons. In particular, we demonstrate the validity of our results to dark photon-like as well as light Z models.

Keywords

Beyond Standard Model Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001.Google Scholar
  2. [2]
    M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].
  3. [3]
    P. Langacker, The physics of heavy Z gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Z boson with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204] [INSPIRE].
  5. [5]
    M. Dittmar, A.-S. Nicollerat and A. Djouadi, Z studies at the LHC: an update, Phys. Lett. B 583 (2004) 111 [hep-ph/0307020] [INSPIRE].
  6. [6]
    L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the Standard model: Z and neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].
  7. [7]
    P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An Effective Z , Phys. Rev. D 84 (2011) 115006 [arXiv:1104.4127] [INSPIRE].
  8. [8]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z -mediated dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators, JHEP 01 (2015) 037 [arXiv:1407.8257] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    O. Ducu, L. Heurtier and J. Maurer, LHC signatures of a Z mediator between dark matter and the SU(3) sector, JHEP 03 (2016) 006 [arXiv:1509.05615] [INSPIRE].
  14. [14]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Okada and S. Okada, \( {Z}_{{}^{BL}}^{\prime } \) portal dark matter and LHC Run-2 results, Phys. Rev. D 93 (2016) 075003 [arXiv:1601.07526] [INSPIRE].
  17. [17]
    E. Accomando et al., Z , Higgses and heavy neutrinos in U(1) models: from the LHC to the GUT scale, JHEP 07 (2016) 086 [arXiv:1605.02910] [INSPIRE].
  18. [18]
    I. Alikhanov and E.A. Paschos, Searching for new light gauge bosons at e + e colliders, arXiv:1710.10131 [INSPIRE].
  19. [19]
    J. Erler, P. Langacker, S. Munir and E. Rojas, Improved constraints on Z bosons from electroweak precision data, JHEP 08 (2009) 017 [arXiv:0906.2435] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Martinez and F. Ochoa, Constraints on 3-3-1 models with electroweak Z pole observables and Z search at the LHC, Phys. Rev. D 90 (2014) 015028 [arXiv:1405.4566] [INSPIRE].
  21. [21]
    A.E. Carcamo Hernandez, R. Martinez and F. Ochoa, Z and Z decays with and without FCNC in 331 models, Phys. Rev. D 73 (2006) 035007 [hep-ph/0510421] [INSPIRE].
  22. [22]
    R. Gauld, F. Goertz and U. Haisch, On minimal Z explanations of the BK μ + μ anomaly, Phys. Rev. D 89 (2014) 015005 [arXiv:1308.1959] [INSPIRE].
  23. [23]
    A.J. Buras and J. Girrbach, Left-handed Z and Z FCNC quark couplings facing new b + μ data, JHEP 12 (2013) 009 [arXiv:1309.2466] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Lindner, F.S. Queiroz and W. Rodejohann, Dilepton bounds on left-right symmetry at the LHC run II and neutrinoless double beta decay, Phys. Lett. B 762 (2016) 190 [arXiv:1604.07419] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Fayet, Light spin 1/2 or spin 0 dark matter particles, Phys. Rev. D 70 (2004) 023514 [hep-ph/0403226] [INSPIRE].
  26. [26]
    C. Bouchiat and P. Fayet, Constraints on the parity-violating couplings of a new gauge boson, Phys. Lett. B 608 (2005) 87 [hep-ph/0410260] [INSPIRE].
  27. [27]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].
  29. [29]
    HADES collaboration, G. Agakishiev et al., Searching a Dark Photon with HADES, Phys. Lett. B 731 (2014) 265 [arXiv:1311.0216] [INSPIRE].
  30. [30]
    WASA-at-COSY collaboration, P. Adlarson et al., Search for a dark photon in the π 0e + e γ decay, Phys. Lett. B 726 (2013) 187 [arXiv:1304.0671] [INSPIRE].
  31. [31]
    Z.-H. Yu, Q.-S. Yan and P.-F. Yin, Detecting interactions between dark matter and photons at high energy e + e colliders, Phys. Rev. D 88 (2013) 075015 [arXiv:1307.5740] [INSPIRE].
  32. [32]
    S.N. Gninenko, Search for MeV dark photons in a light-shining-through-walls experiment at CERN, Phys. Rev. D 89 (2014) 075008 [arXiv:1308.6521] [INSPIRE].
  33. [33]
    B. Döbrich et al., Hidden Photon Dark Matter Search with a Large Metallic Mirror, in the proceedings of the 10th Patras Workshop on Axions, WIMPs and WISPs (AXION-WIMP 2014), June 29-July 4, Geneva, Switzerland (2014), arXiv:1410.0200 [INSPIRE].
  34. [34]
    BaBar collaboration, J.P. Lees et al., Search for a dark photon in e + e collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  35. [35]
    P. Arias et al., Extracting hidden-photon dark matter from an LC-circuit, Eur. Phys. J. C 75 (2015) 310 [arXiv:1411.4986] [INSPIRE].
  36. [36]
    D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating dark photons with high-energy colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Belle collaboration, I. Jaegle, Search for the dark photon and the dark Higgs boson at Belle, Phys. Rev. Lett. 114 (2015) 211801 [arXiv:1502.00084] [INSPIRE].
  39. [39]
    NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π 0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].
  40. [40]
    NA64 collaboration, D. Banerjee et al., Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett. 118 (2017) 011802 [arXiv:1610.02988] [INSPIRE].
  41. [41]
    DAMIC collaboration, A. Aguilar-Arevalo et al., First direct-detection constraints on eV-scale hidden-photon dark matter with DAMIC at SNOLAB, Phys. Rev. Lett. 118 (2017) 141803 [arXiv:1611.03066] [INSPIRE].
  42. [42]
    G. Barello, S. Chang, C.A. Newby and B. Ostdiek, Dont be left in the dark: improving LHC searches for dark photons using lepton-jet substructure, Phys. Rev. D 95 (2017) 055007 [arXiv:1612.00026] [INSPIRE].
  43. [43]
    CRESST collaboration, G. Angloher et al., Dark-photon search using data from CRESST-II phase 2, Eur. Phys. J. C 77 (2017) 299 [arXiv:1612.07662] [INSPIRE].
  44. [44]
    M. He, X.-G. He and C.-K. Huang, Dark photon search at a circular e + e collider, Int. J. Mod. Phys. A 32 (2017) 1750138 [arXiv:1701.08614] [INSPIRE].
  45. [45]
    S. Biswas, E. Gabrielli, M. Heikinheimo and B. Mele, Dark-photon searches via ZH production at e + e colliders, Phys. Rev. D 96 (2017) 055012 [arXiv:1703.00402] [INSPIRE].
  46. [46]
    BESIII collaboration, M. Ablikim et al., Dark photon search in the mass range between 1.5 and 3.4 GeV/c 2, Phys. Lett. B 774 (2017) 252 [arXiv:1705.04265] [INSPIRE].
  47. [47]
    LHCb collaboration, Search for dark photons produced in 13 TeV pp collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].
  48. [48]
    M. He, X.-G. He, C.-K. Huang and G. Li, Search for a heavy dark photon at future e + e colliders, JHEP 03 (2018) 139 [arXiv:1712.09095] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    BaBar collaboration, J.P. Lees et al., Search for invisible decays of a dark photon produced in e + e collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
  50. [50]
    NA64 collaboration, D. Banerjee et al., Search for vector mediator of Dark Matter production in invisible decay mode, Phys. Rev. D 97 (2018) 072002 [arXiv:1710.00971] [INSPIRE].
  51. [51]
    H.J. Steiner, Experimental limit on neutrino-electron scattering, Phys. Rev. Lett. 24 (1970) 746 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    F. Reines and H.S. Gurr, Upper limit for elastic scattering of electron anti-neutrinos by electrons, Phys. Rev. Lett. 24 (1970) 1448 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    H.S. Gurr, F. Reines and H.W. Sobel, Search for anti-electron-neutrino + e scattering, Phys. Rev. Lett. 28 (1972) 1406 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J.F. Wheater and C.H. Llewellyn Smith, Electroweak radiative corrections to neutrino and electron scattering and the value of sin2 θ W, Nucl. Phys. B 208 (1982) 27 [Erratum ibid. B 226 (1983) 547] [INSPIRE].
  55. [55]
    CHARM collaboration, J. Dorenbosch et al., Experimental results on neutrino-electron scattering, Z. Phys. C 41 (1989) 567 [Erratum ibid. C 51 (1991) 142] [INSPIRE].
  56. [56]
    Super-Kamiokande collaboration, Y. Fukuda et al., Measurement of the solar neutrino energy spectrum using neutrino electron scattering, Phys. Rev. Lett. 82 (1999) 2430 [hep-ex/9812011] [INSPIRE].
  57. [57]
    J.N. Bahcall, M. Kamionkowski and A. Sirlin, Solar neutrinos: radiative corrections in neutrino-electron scattering experiments, Phys. Rev. D 51 (1995) 6146 [astro-ph/9502003] [INSPIRE].
  58. [58]
    LSND collaboration, L.B. Auerbach et al., Measurement of electron-neutrino-electron elastic scattering, Phys. Rev. D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].
  59. [59]
    O.G. Miranda, M. Maya and R. Huerta, Update to the neutrino-electron scattering in left-right symmetric models, Phys. Rev. D 53 (1996) 1719 [hep-ph/9509335] [INSPIRE].
  60. [60]
    J. Barranco, O.G. Miranda, C.A. Moura and J.W.F. Valle, Constraining non-standard neutrino-electron interactions, Phys. Rev. D 77 (2008) 093014 [arXiv:0711.0698] [INSPIRE].
  61. [61]
    A. Bolanos et al., Probing non-standard neutrino-electron interactions with solar and reactor neutrinos, Phys. Rev. D 79 (2009) 113012 [arXiv:0812.4417] [INSPIRE].ADSGoogle Scholar
  62. [62]
    E.A. Garces et al., Low-energy neutrino-electron scattering as a standard model probe: the potential of LENA as case study, Phys. Rev. D 85 (2012) 073006 [arXiv:1112.3633] [INSPIRE].
  63. [63]
    J. Billard, L.E. Strigari and E. Figueroa-Feliciano, Solar neutrino physics with low-threshold dark matter detectors, Phys. Rev. D 91 (2015) 095023 [arXiv:1409.0050] [INSPIRE].
  64. [64]
    E. Bertuzzo et al., Dark matter and exotic neutrino interactions in direct detection searches, JHEP 04 (2017) 073 [Erratum ibid. 04 (2017) 073] [arXiv:1701.07443] [INSPIRE].
  65. [65]
    W. Rodejohann, X.-J. Xu and C.E. Yaguna, Distinguishing between Dirac and Majorana neutrinos in the presence of general interactions, JHEP 05 (2017) 024 [arXiv:1702.05721] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K.A. Kouzakov and A.I. Studenikin, Electromagnetic interactions of neutrinos in processes of low-energy elastic neutrino-electron scattering, arXiv:1711.00517 [INSPIRE].
  67. [67]
    R. Harnik, J. Kopp and P.A.N. Machado, Exploring ν signals in dark matter detectors, JCAP 07 (2012) 026 [arXiv:1202.6073] [INSPIRE].
  68. [68]
    K. Kaneta, Z. Kang and H.-S. Lee, Right-handed neutrino dark matter under the B-L gauge interaction, JHEP 02 (2017) 031 [arXiv:1606.09317] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    Y. Kaneta and T. Shimomura, On the possibility of a search for the L μ -L τ gauge boson at Belle-II and neutrino beam experiments, PTEP 2017 (2017) 053B04 [arXiv:1701.00156] [INSPIRE].
  70. [70]
    C.-H. Chen and T. Nomura, L μ -L τ gauge-boson production from lepton flavor violating τ decays at Belle II, Phys. Rev. D 96 (2017) 095023 [arXiv:1704.04407] [INSPIRE].
  71. [71]
    T. Araki, S. Hoshino, T. Ota, J. Sato and T. Shimomura, Detecting the L μ -L τ gauge boson at Belle II, Phys. Rev. D 95 (2017) 055006 [arXiv:1702.01497] [INSPIRE].
  72. [72]
    S. Bilmis et al., Constraints on dark photon from neutrino-electron scattering experiments, Phys. Rev. D 92 (2015) 033009 [arXiv:1502.07763] [INSPIRE].
  73. [73]
    S.-F. Ge and I.M. Shoemaker, Constraining photon portal dark matter with TEXONO and Coherent data, arXiv:1710.10889 [INSPIRE].
  74. [74]
    nuSTORM collaboration, P. Kyberd et al., nuSTORMNeutrinos from STORed muons: letter of intent to the Fermilab physics advisory committee, arXiv:1206.0294 [INSPIRE].
  75. [75]
    J. Bian, Measurement of neutrino-electron elastic scattering at NOvA near detector, talk given at the Meeting of the APS Division of Particles and Fields (DPF 2017), July 31-August 4, Batavia, Illinois U.S.A. (2017), arXiv:1710.03428 [INSPIRE].
  76. [76]
    K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Z mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].
  77. [77]
    J. Heeck and W. Rodejohann, Kinetic and mass mixing with three abelian groups, Phys. Lett. B 705 (2011) 369 [arXiv:1109.1508] [INSPIRE].
  78. [78]
    B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196.Google Scholar
  79. [79]
    M.D. Campos et al., Neutrino masses and absence of flavor changing interactions in the 2HDM from gauge principles, JHEP 08 (2017) 092 [arXiv:1705.05388] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    B. Dutta et al., Sensitivity to Z-prime and nonstandard neutrino interactions from ultralow threshold neutrino-nucleus coherent scattering, Phys. Rev. D 93 (2016) 013015 [arXiv:1508.07981] [INSPIRE].
  81. [81]
    J.B. Dent et al., Accelerator and reactor complementarity in coherent neutrino-nucleus scattering, Phys. Rev. D 97 (2018) 035009 [arXiv:1711.03521] [INSPIRE].
  82. [82]
    CHARM-II collaboration, P. Vilain et al., Measurement of differential cross-sections for muon-neutrino electron scattering, Phys. Lett. B 302 (1993) 351 [INSPIRE].
  83. [83]
    CHARM-II collaboration, P. Vilain et al., Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [INSPIRE].
  84. [84]
    A.G. Beda et al., GEMMA experiment: three years of the search for the neutrino magnetic moment, Phys. Part. Nucl. Lett. 7 (2010) 406 [arXiv:0906.1926] [INSPIRE].CrossRefGoogle Scholar
  85. [85]
    A.G. Beda et al., Upper limit on the neutrino magnetic moment from three years of data from the GEMMA spectrometer, arXiv:1005.2736 [INSPIRE].
  86. [86]
    TEXONO collaboration, M. Deniz et al., Measurement of \( {\overline{\nu}}_e \) -electron scattering cross-section with a CsI(Tl) scintillating crystal array at the Kuo-Sheng nuclear power reactor, Phys. Rev. D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].
  87. [87]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].
  88. [88]
    B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].
  89. [89]
    R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering new light states at neutrin experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].
  90. [90]
    D.F. Bartlett and S. Loegl, Limits on an electromagnetic fifth force, Phys. Rev. Lett. 61 (1988) 2285 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Manfred Lindner
    • 1
  • Farinaldo S. Queiroz
    • 2
  • Werner Rodejohann
    • 1
  • Xun-Jie Xu
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.International Institute of PhysicsFederal University of Rio Grande do NorteNatal-RNBrazil

Personalised recommendations