# Scattering forms and the positive geometry of kinematics, color and the worldsheet

- 15 Downloads

## Abstract

The search for a theory of the S-Matrix over the past five decades has revealed surprising geometric structures underlying scattering amplitudes ranging from the string worldsheet to the amplituhedron, but these are all geometries in auxiliary spaces as opposed to the kinematical space where amplitudes actually live. Motivated by recent advances providing a reformulation of the amplituhedron and planar \( \mathcal{N} \) = 4 SYM amplitudes directly in kinematic space, we propose a novel geometric understanding of amplitudes in more general theories. The key idea is to think of amplitudes not as functions, but rather as differential forms on kinematic space. We explore the resulting picture for a wide range of massless theories in general spacetime dimensions. For the bi-adjoint *ϕ*^{3} scalar theory, we establish a direct connection between its “scattering form” and a classic polytope — the associahedron — known to mathematicians since the 1960’s. We find an associahedron living naturally in kinematic space, and the tree level amplitude is simply the “canonical form” associated with this “positive geometry”. Fundamental physical properties such as locality and unitarity, as well as novel “soft” limits, are fully determined by the combinatorial geometry of this polytope. Furthermore, the moduli space for the open string worldsheet has also long been recognized as an associahedron. We show that the scattering equations act as a diffeomorphism between the interior of this old “worldsheet associahedron” and the new “kinematic associahedron”, providing a geometric interpretation and simple conceptual derivation of the bi-adjoint CHY formula. We also find “scattering forms” on kinematic space for Yang-Mills theory and the Non-linear Sigma Model, which are dual to the fully color-dressed amplitudes despite having no explicit color factors. This is possible due to a remarkable fact—“Color is Kinematics”— whereby kinematic wedge products in the scattering forms satisfy the same Jacobi relations as color factors. Finally, all our scattering forms are well-defined on the projectivized kinematic space, a property which can be seen to provide a geometric origin for color-kinematics duality.

## Keywords

Scattering Amplitudes Differential and Algebraic Geometry## Notes

**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]M.B. Green, J.H. Schwarz and E. Witten,
*Superstring theory*, Cambridge University Press, Cambridge (1987).Google Scholar - [2]J. Polchinski,
*String theory*, Cambridge University Press, Cambridge U.K. (1998).Google Scholar - [3]P. Deligne and D. Mumford,
*The irreducibility of the space of curves of given genus*,*Publ. Math. IHES***36**(1969) 75.MathSciNetCrossRefMATHGoogle Scholar - [4]E. Witten,
*Perturbative gauge theory as a string theory in twistor space*,*Commun. Math. Phys.***252**(2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [5]F. Cachazo, S. He and E.Y. Yuan,
*Scattering equations and Kawai-Lewellen-Tye orthogonality*,*Phys. Rev.***D 90**(2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar - [6]F. Cachazo, S. He and E.Y. Yuan,
*Scattering of massless particles in arbitrary dimensions*,*Phys. Rev. Lett.***113**(2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar - [7]N. Berkovits,
*Infinite tension limit of the pure spinor superstring*,*JHEP***03**(2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [8]L. Mason and D. Skinner,
*Ambitwistor strings and the scattering equations*,*JHEP***07**(2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar - [9]N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan,
*A duality for the S matrix*,*JHEP***03**(2010) 020 [arXiv:0907.5418] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [10]A. Hodges,
*Eliminating spurious poles from gauge-theoretic amplitudes*,*JHEP***05**(2013) 135 [arXiv:0905.1473] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [11]N. Arkani-Hamed et al.,
*Grassmannian geometry of scattering amplitudes*, Cambridge University Press, Cambridge U.K. (2016), arXiv:1212.5605 [INSPIRE]. - [12]N. Arkani-Hamed and J. Trnka,
*The amplituhedron*,*JHEP***10**(2014) 030 [arXiv:1312.2007] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [13]N. Arkani-Hamed, Y. Bai and T. Lam,
*Positive geometries and canonical forms*,*JHEP***11**(2017) 039 [arXiv:1703.04541] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [14]N. Arkani-Hamed, H. Thomas and J. Trnka,
*Unwinding the amplituhedron in binary*,*JHEP***01**(2018) 016 [arXiv:1704.05069] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [15]F. Cachazo, S. He and E.Y. Yuan,
*Scattering of massless particles: scalars, gluons and gravitons*,*JHEP***07**(2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar - [16]J.D. Stasheff,
*Homotopy associativity of H-spaces. I*,*Trans. Amer. Math. Soc.***108**(1963) 275.Google Scholar - [17]J.D. Stasheff,
*Homotopy associativity of H-Spaces. II*,*Trans. Amer. Math. Soc.***108**(1963) 293.Google Scholar - [18]Z. Bern, J.J.M. Carrasco and H. Johansson,
*New relations for gauge-theory amplitudes*,*Phys. Rev.***D 78**(2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar - [19]Z. Bern, J.J.M. Carrasco and H. Johansson,
*Perturbative quantum gravity as a double copy of gauge theory*,*Phys. Rev. Lett.***105**(2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [20]N. Arkani-Hamed, L. Rodina and J. Trnka,
*Locality and unitarity from singularities and gauge invariance*, arXiv:1612.02797 [INSPIRE]. - [21]F. Cachazo, S. He and E.Y. Yuan,
*Scattering equations and matrices: from einstein to Yang-Mills, DBI and NLSM*,*JHEP***07**(2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [22]
- [23]G.M. Ziegler,
*Lectures on polytopes*, Graduate Texts in Mathematics volume 152, Springer, Germany (1995).Google Scholar - [24]Wikipedia,
*Catalan number*, https://en.wikipedia.org/wiki/Catalan number. - [25]Y. Bai and S. He,
*The amplituhedron from momentum twistor diagrams*,*JHEP***02**(2015) 065 [arXiv:1408.2459] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [26]S.L. Devadoss,
*Tessellations of moduli spaces and the Mosaic operad*, math/9807010. - [27]A.J. Hanson and J.-P. Sha,
*A contour integral representation for the dual five-point function and a symmetry of the genus-4 surface in R*^{6},*J. Phys.***A 39**(2006) 2509 [INSPIRE].ADSMATHGoogle Scholar - [28]S. Mizera,
*Combinatorics and topology of Kawai-Lewellen-Tye relations*,*JHEP***08**(2017) 097 [arXiv:1706.08527] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [29]N. Arkani-Hamed,
*Amplitudes and correlators as canonical forms; worldsheets as positive geometries*, http://www.strings2017.org/wp-content/uploads/2017/06/1000 nimastring.pdf. - [30]L. de la Cruz, A. Kniss and S. Weinzierl,
*Properties of scattering forms and their relation to associahedra*,*JHEP***03**(2018) 064 [arXiv:1711.07942] [INSPIRE].CrossRefGoogle Scholar - [31]V.P. Nair,
*A current algebra for some gauge theory amplitudes*,*Phys. Lett.***B 214**(1988) 215 [INSPIRE].ADSCrossRefGoogle Scholar - [32]F. Cachazo, S. He and E.Y. Yuan,
*Scattering in three dimensions from rational maps*,*JHEP***10**(2013) 141 [arXiv:1306.2962] [INSPIRE].ADSCrossRefGoogle Scholar - [33]F.C.S. Brown,
*Multiple zeta values and periods of moduli spaces M*_{0,n}(*R*),*Annales Sci. Ecole Norm. Sup.***42**(2009) 371 [math/0606419] [INSPIRE]. - [34]Z. Koba and H.B. Nielsen,
*Manifestly crossing invariant parametrization of n meson amplitude*,*Nucl. Phys.***B 12**(1969) 517 [INSPIRE].ADSCrossRefGoogle Scholar - [35]C.R. Mafra, O. Schlotterer and S. Stieberger,
*Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure*,*Nucl. Phys.***B 873**(2013) 461 [arXiv:1106.2646] [INSPIRE]. - [36]F. Cachazo, S. Mizera and G. Zhang,
*Scattering equations: real solutions and particles on a line*,*JHEP***03**(2017) 151 [arXiv:1609.00008] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [37]V. Del Duca, L.J. Dixon and F. Maltoni,
*New color decompositions for gauge amplitudes at tree and loop level*,*Nucl. Phys.***B 571**(2000) 51 [hep-ph/9910563] [INSPIRE]. - [38]R. Kleiss and H. Kuijf,
*Multi-gluon cross-sections and five jet production at hadron colliders*,*Nucl. Phys.***B 312**(1989) 616 [INSPIRE].ADSCrossRefGoogle Scholar - [39]Z. Bern and T. Dennen,
*A color dual form for gauge-theory amplitudes*,*Phys. Rev. Lett.***107**(2011) 081601 [arXiv:1103.0312] [INSPIRE].ADSCrossRefGoogle Scholar - [40]C.R. Mafra, O. Schlotterer and S. Stieberger,
*Explicit BCJ numerators from pure spinors*,*JHEP***07**(2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [41]T. Adamo, E. Casali and D. Skinner,
*Ambitwistor strings and the scattering equations at one loop*,*JHEP***04**(2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar - [42]K. Ohmori,
*Worldsheet geometries of ambitwistor string*,*JHEP***06**(2015) 075 [arXiv:1504.02675] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [43]E. Casali et al.,
*New ambitwistor string theories*,*JHEP***11**(2015) 038 [arXiv:1506.08771] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [44]E. Casali and P. Tourkine,
*On the null origin of the ambitwistor string*,*JHEP***11**(2016) 036 [arXiv:1606.05636] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [45]
- [46]H. Kawai, D.C. Lewellen and S.H.H. Tye,
*A relation between tree amplitudes of closed and open strings*,*Nucl. Phys.***B 269**(1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [47]Y.-t. Huang, W. Siegel and E.Y. Yuan,
*Factorization of chiral string amplitudes*,*JHEP***09**(2016) 101 [arXiv:1603.02588] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [48]S. Mizera,
*Scattering amplitudes from intersection theory*,*Phys. Rev. Lett.***120**(2018) 141602 [arXiv:1711.00469] [INSPIRE].ADSCrossRefGoogle Scholar - [49]D. Tamari,
*The algebra of bracketings and their enumeration*,*Nieuw Arch. Wisk***3**(1962) 131.MathSciNetMATHGoogle Scholar - [50]X. Gao, S. He and Y. Zhang,
*Labelled tree graphs, Feynman diagrams and disk integrals*,*JHEP***11**(2017) 144 [arXiv:1708.08701] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [51]Wikipedia,
*Permutohedron*, https://en.wikipedia.org/wiki/Permutohedron. - [52]A. Postnikov,
*Permutohedra, associahedra, and beyond*, math/0507163. - [53]A. Postnikov, V. Reiner and L. Williams,
*Faces of generalized permutohedra*, math/0609184. - [54]N. Early,
*Generalized permutohedra, scattering amplitudes and a cubic three-fold*, arXiv:1709.03686 [INSPIRE]. - [55]
- [56]E. Casali and P. Tourkine,
*Infrared behaviour of the one-loop scattering equations and supergravity integrands*,*JHEP***04**(2015) 013 [arXiv:1412.3787] [INSPIRE].MathSciNetCrossRefGoogle Scholar - [57]Y. Geyer, L. Mason, R. Monteiro and P. Tourkine,
*Loop integrands for scattering amplitudes from the Riemann sphere*,*Phys. Rev. Lett.***115**(2015) 121603 [arXiv:1507.00321] [INSPIRE].ADSCrossRefGoogle Scholar - [58]S. He and E.Y. Yuan,
*One-loop scattering equations and amplitudes from forward limit*,*Phys. Rev.***D 92**(2015) 105004 [arXiv:1508.06027] [INSPIRE].ADSMathSciNetGoogle Scholar - [59]Y. Geyer, L. Mason, R. Monteiro and P. Tourkine,
*One-loop amplitudes on the Riemann sphere*,*JHEP***03**(2016) 114 [arXiv:1511.06315] [INSPIRE].ADSCrossRefGoogle Scholar - [60]F. Cachazo, S. He and E.Y. Yuan,
*One-loop corrections from higher dimensional tree amplitudes*,*JHEP***08**(2016) 008 [arXiv:1512.05001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [61]Y. Geyer, L. Mason, R. Monteiro and P. Tourkine,
*Two-loop scattering amplitudes from the Riemann sphere*,*Phys. Rev.***D 94**(2016) 125029 [arXiv:1607.08887] [INSPIRE].ADSMathSciNetGoogle Scholar - [62]S. He and O. Schlotterer,
*New relations for gauge-theory and gravity amplitudes at loop level*,*Phys. Rev. Lett.***118**(2017) 161601 [arXiv:1612.00417] [INSPIRE].ADSCrossRefGoogle Scholar - [63]S. He, O. Schlotterer and Y. Zhang,
*New BCJ representations for one-loop amplitudes in gauge theories and gravity*,*Nucl. Phys.***B 930**(2018) 328 [arXiv:1706.00640] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [64]H. Gomez, S. Mizera and G. Zhang,
*CHY loop integrands from holomorphic forms*,*JHEP***03**(2017) 092 [arXiv:1612.06854] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [65]R. Roiban, M. Spradlin and A. Volovich,
*On the tree level S matrix of Yang-Mills theory*,*Phys. Rev.***D 70**(2004) 026009 [hep-th/0403190] [INSPIRE].ADSMathSciNetGoogle Scholar - [66]S. He,
*Scattering amplitudes as differential forms*, http://online.kitp.ucsb.edu/online/scamp_c17/he/.