Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism

  • Johannes Broedel
  • Claude Duhr
  • Falko Dulat
  • Lorenzo Tancredi
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

We introduce a class of iterated integrals, defined through a set of linearly independent integration kernels on elliptic curves. As a direct generalisation of multiple polylogarithms, we construct our set of integration kernels ensuring that they have at most simple poles, implying that the iterated integrals have at most logarithmic singularities. We study the properties of our iterated integrals and their relationship to the multiple elliptic polylogarithms from the mathematics literature. On the one hand, we find that our iterated integrals span essentially the same space of functions as the multiple elliptic polylogarithms. On the other, our formulation allows for a more direct use to solve a large variety of problems in high-energy physics. We demonstrate the use of our functions in the evaluation of the Laurent expansion of some hypergeometric functions for values of the indices close to half integers.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995) 197.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  3. [3]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
  4. [4]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  5. [5]
    N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta Leopoldina (Halle) 90 (1909) 123.MATHGoogle Scholar
  6. [6]
    E.E. Kummer, Über die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen I, J. Reine Angew. Math. 21 (1840) 74.MathSciNetCrossRefGoogle Scholar
  7. [7]
    E.E. Kummer, Über die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen II, J. Reine Angew. Math. 21 (1840) 193.MathSciNetCrossRefGoogle Scholar
  8. [8]
    E.E. Kummer, Über die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen III, J. Reine Angew. Math. 21 (1840) 328.MathSciNetCrossRefGoogle Scholar
  9. [9]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Ablinger, J. Blumlein and C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    U. Aglietti, R. Bonciani, L. Grassi and E. Remiddi, The two loop crossed ladder vertex diagram with two massive exchanges, Nucl. Phys. B 789 (2008) 45 [arXiv:0705.2616] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Bloch, M. Kerr and P. Vanhove, Local mirror symmetry and the sunset Feynman integral, Adv. Theor. Math. Phys. 21 (2017) 1373 [arXiv:1601.08181] [INSPIRE].CrossRefMATHGoogle Scholar
  15. [15]
    E. Remiddi and L. Tancredi, Schouten identities for Feynman graph amplitudes; the master integrals for the two-loop massive sunrise graph, Nucl. Phys. B 880 (2014) 343 [arXiv:1311.3342] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys. B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].
  17. [17]
    S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, J. Number Theor. 148 (2015) 328 [arXiv:1309.5865] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph with arbitrary masses, J. Math. Phys. 54 (2013) 052303 [arXiv:1302.7004] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys. 55 (2014) 102301 [arXiv:1405.5640] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case, J. Math. Phys. 56 (2015) 072303 [arXiv:1504.03255] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    L. Adams, C. Bogner and S. Weinzierl, The iterated structure of the all-order result for the two-loop sunrise integral, J. Math. Phys. 57 (2016) 032304 [arXiv:1512.05630] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    E. Remiddi and L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys. B 907 (2016) 400 [arXiv:1602.01481] [INSPIRE].
  23. [23]
    L. Adams, C. Bogner, A. Schweitzer and S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms, J. Math. Phys. 57 (2016) 122302 [arXiv:1607.01571] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    R. Bonciani et al., Two-loop planar master integrals for Higgs→ 3 partons with full heavy-quark mass dependence, JHEP 12 (2016) 096 [arXiv:1609.06685] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. von Manteuffel and L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms, JHEP 06 (2017) 127 [arXiv:1701.05905] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Primo and L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph, Nucl. Phys. B 921 (2017) 316 [arXiv:1704.05465] [INSPIRE].
  27. [27]
    J. Ablinger et al., Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams, arXiv:1706.01299 [INSPIRE].
  28. [28]
    L.-B. Chen, Y. Liang and C.-F. Qiao, NNLO QCD corrections to γ + η c(η b) exclusive production in electron-positron collision, JHEP 01 (2018) 091 [arXiv:1710.07865] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.L. Bourjaily et al., Elliptic double-box integrals: massless scattering amplitudes beyond polylogarithms, Phys. Rev. Lett. 120 (2018) 121603 [arXiv:1712.02785] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L.-B. Chen, J. Jiang and C.-F. Qiao, Two-loop integrals for CP-even heavy quarkonium production and decays: elliptic sectors, arXiv:1712.03516 [INSPIRE].
  31. [31]
    J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP 07 (2015) 112 [arXiv:1412.5535] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Sabry, Fourth order spectral functions for the electron propagator, Nucl. Phys. 33 (1962) 401.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    D.J. Broadhurst, The master two loop diagram with masses, Z. Phys. C 47 (1990) 115 [INSPIRE].Google Scholar
  34. [34]
    S. Bauberger, F.A. Berends, M. Böhm and M. Buza, Analytical and numerical methods for massive two loop selfenergy diagrams, Nucl. Phys. B 434 (1995) 383 [hep-ph/9409388] [INSPIRE].
  35. [35]
    S. Bauberger and M. Böhm, Simple one-dimensional integral representations for two loop selfenergies: the master diagram, Nucl. Phys. B 445 (1995) 25 [hep-ph/9501201] [INSPIRE].
  36. [36]
    B.A. Kniehl, A.V. Kotikov, A. Onishchenko and O. Veretin, Two-loop sunset diagrams with three massive lines, Nucl. Phys. B 738 (2006) 306 [hep-ph/0510235] [INSPIRE].
  37. [37]
    E. Remiddi and L. Tancredi, An elliptic generalization of multiple polylogarithms, Nucl. Phys. B 925 (2017) 212 [arXiv:1709.03622] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    M. Hidding and F. Moriello, All orders structure and efficient computation of linearly reducible elliptic Feynman integrals, arXiv:1712.04441 [INSPIRE].
  39. [39]
    G. Passarino, Elliptic polylogarithms and basic hypergeometric functions, Eur. Phys. J. C 77 (2017) 77 [arXiv:1610.06207] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Zagier, The bloch-wigner-ramakrishnan polylogarithm function, Math. Ann. 286 (1990) 613.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    S.J. Bloch, Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, American Mathematical Society, U.S.A. (2000).Google Scholar
  42. [42]
    A. Levin, Elliptic polylogarithms: an analytic theory, Comp. Math. 106 (1997) 267.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    A. Beilinson and A. Levin, The elliptic polylogarithm, in Proceedings of Symposium in Pure Mathematics 55, Part II, J.P.S.U. Jannsen, S.L. Kleiman eds., American Mathematical Society, U.S.A. (1994).Google Scholar
  44. [44]
    A. Levin and G. Racinet, Towards multiple elliptic polylogarithms, math/0703237.
  45. [45]
    F. Brown and A. Levin, Multiple elliptic polylogarithms, arXiv:1110.6917.
  46. [46]
    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral, arXiv:1712.07095.
  47. [47]
    J. A. Lappo-Danilevski, Résolution algorithmique des problèmes réguliers de Poincaré et de Riemann ( Mémoire premier: Le problème de poincaré, concernant la construction d’un groupe de monodromie d’un système donné d’équations différentielles linéaires aux intégrales régulières), J. Soc. Phys.-Math. Léningrade 2 (1928) 94.Google Scholar
  48. [48]
    J.H. Silverman, The arithmetic of elliptic curves, second edition, Springer, Germany (1986).CrossRefMATHGoogle Scholar
  49. [49]
    N. Matthes, Elliptic multiple Zeta values, Ph.D. thesis, Universität Hamburg, Hamburg, Germany (2016).Google Scholar
  50. [50]
    S. Bloch, M. Kerr and P. Vanhove, A Feynman integral via higher normal functions, Compos. Math. 151 (2015) 2329 [arXiv:1406.2664] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    J. Ablinger et al., Iterated Binomial Sums and their Associated Iterated Integrals, J. Math. Phys. 55 (2014) 112301 [arXiv:1407.1822] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    U. Aglietti and R. Bonciani, Master integrals with 2 and 3 massive propagators for the 2 loop electroweak form-factor — Planar case, Nucl. Phys. B 698 (2004) 277 [hep-ph/0401193] [INSPIRE].
  53. [53]
    R. Bonciani, G. Degrassi and A. Vicini, On the generalized harmonic polylogarithms of one complex variable, Comput. Phys. Commun. 182 (2011) 1253 [arXiv:1007.1891] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    E. Panzer, Various guises of elliptic iterated integrals, talk give at The elliptic/missing Feynman integrals, June 5-9, ETH Zürich, Switzerland (2017).Google Scholar
  55. [55]
    F. Brown, Multiple modular values and the relative completion of the fundamental group of m 1,1, arXiv:1407.5167.
  56. [56]
    J. Broedel, N. Matthes and O. Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra, J. Phys. A 49 (2016) 155203 [arXiv:1507.02254] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  57. [57]
    N. Matthes, Linear independence of indefinite iterated Eisenstein integrals, arXiv:1601.05743 [INSPIRE].
  58. [58]
    N. Matthes, Decomposition of elliptic multiple zeta values and iterated Eisenstein integrals, arXiv:1703.09597.
  59. [59]
    N. Matthes, On the algebraic structure of iterated integrals of quasimodular forms, Alg. Number Theor. 11-9 (2017) 2113 [arXiv:1708.04561].MathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    F. Brown, The massless higher-loop two-point function, Commun. Math. Phys. 287 (2009) 925 [arXiv:0804.1660] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188 (2015) 148 [arXiv:1403.3385] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Johannes Broedel
    • 1
  • Claude Duhr
    • 2
    • 3
  • Falko Dulat
    • 4
  • Lorenzo Tancredi
    • 2
  1. 1.Institut für Mathematik und Institut für PhysikHumboldt-Universität zu Berlin, IRIS AdlershofBerlinGermany
  2. 2.Theoretical Physics DepartmentCERNGenevaSwitzerland
  3. 3.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-La-NeuveBelgium
  4. 4.SLAC National Accelerator LaboratoryStanford UniversityStanfordU.S.A.

Personalised recommendations