Advertisement

The Hyperbolic Higgs

  • Timothy Cohen
  • Nathaniel Craig
  • Gian F. Giudice
  • Matthew McCullough
Open Access
Regular Article - Theoretical Physics

Abstract

We introduce the Hyperbolic Higgs, a novel solution to the little hierarchy problem that features Standard Model neutral scalar top partners. At one-loop order, the protection from ultraviolet sensitivity is due to an accidental non-compact symmetry of the Higgs potential that emerges in the infrared. Once the general features of the effective description are detailed, a completion that relies on a five dimensional supersymmetric framework is provided. Novel phenomenology is compared and contrasted with the Twin Higgs scenario.

Keywords

Beyond Standard Model Field Theories in Higher Dimensions Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
  2. [2]
    Z. Chacko, H.-S. Goh and R. Harnik, A Twin Higgs model from left-right symmetry, JHEP 01 (2006) 108 [hep-ph/0512088] [INSPIRE].
  3. [3]
    G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP 02 (2007) 009 [hep-ph/0609152] [INSPIRE].
  4. [4]
    D. Poland and J. Thaler, The Dark Top, JHEP 11 (2008) 083 [arXiv:0808.1290] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Z. Chacko, C.A. Krenke and T. Okui, Supersymmetry in Slow Motion, JHEP 01 (2009) 050 [arXiv:0809.3820] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Cai, H.-C. Cheng and J. Terning, A Quirky Little Higgs Model, JHEP 05 (2009) 045 [arXiv:0812.0843] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    N. Craig, S. Knapen and P. Longhi, Neutral Naturalness from Orbifold Higgs Models, Phys. Rev. Lett. 114 (2015) 061803 [arXiv:1410.6808] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B. Batell and M. McCullough, Neutrino Masses from Neutral Top Partners, Phys. Rev. D 92 (2015) 073018 [arXiv:1504.04016] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Curtin and P. Saraswat, Towards a No-Lose Theorem for Naturalness, Phys. Rev. D 93 (2016) 055044 [arXiv:1509.04284] [INSPIRE].ADSGoogle Scholar
  10. [10]
    H.-C. Cheng, S. Jung, E. Salvioni and Y. Tsai, Exotic Quarks in Twin Higgs Models, JHEP 03 (2016) 074 [arXiv:1512.02647] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Craig, S. Knapen, P. Longhi and M. Strassler, The Vector-like Twin Higgs, JHEP 07 (2016) 002 [arXiv:1601.07181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    T. Gherghetta, M. Nguyen and Z. Thomas, Neutral Naturalness with Bifundamental Gluinos, Phys. Rev. D 94 (2016) 115008 [arXiv:1610.00342] [INSPIRE].ADSGoogle Scholar
  13. [13]
    Y. Kats, M. McCullough, G. Perez, Y. Soreq and J. Thaler, Colorful Twisted Top Partners and Partnerium at the LHC, JHEP 06 (2017) 126 [arXiv:1704.03393] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Barbieri, T. Gregoire and L.J. Hall, Mirror world at the large hadron collider, hep-ph/0509242 [INSPIRE].
  15. [15]
    Z. Chacko, Y. Nomura, M. Papucci and G. Perez, Natural little hierarchy from a partially goldstone twin Higgs, JHEP 01 (2006) 126 [hep-ph/0510273] [INSPIRE].
  16. [16]
    A. Falkowski, S. Pokorski and M. Schmaltz, Twin SUSY, Phys. Rev. D 74 (2006) 035003 [hep-ph/0604066] [INSPIRE].
  17. [17]
    S. Chang, L.J. Hall and N. Weiner, A Supersymmetric twin Higgs, Phys. Rev. D 75 (2007) 035009 [hep-ph/0604076] [INSPIRE].
  18. [18]
    R. Foot and R.R. Volkas, Natural electroweak symmetry breaking in generalised mirror matter models, Phys. Lett. B 645 (2007) 75 [hep-ph/0610013] [INSPIRE].
  19. [19]
    N. Craig, C. Englert and M. McCullough, New Probe of Naturalness, Phys. Rev. Lett. 111 (2013) 121803 [arXiv:1305.5251] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. El Hedri and A. Hook, Minimal Signatures of Naturalness, JHEP 10 (2013) 105 [arXiv:1305.6608] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs, JHEP 03 (2014) 140 [arXiv:1312.1341] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Geller and O. Telem, Holographic Twin Higgs Model, Phys. Rev. Lett. 114 (2015) 191801 [arXiv:1411.2974] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Burdman, Z. Chacko, R. Harnik, L. de Lima and C.B. Verhaaren, Colorless Top Partners, a 125 GeV Higgs and the Limits on Naturalness, Phys. Rev. D 91 (2015) 055007 [arXiv:1411.3310] [INSPIRE].ADSGoogle Scholar
  24. [24]
    N. Craig, S. Knapen and P. Longhi, The Orbifold Higgs, JHEP 03 (2015) 106 [arXiv:1411.7393] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    N. Craig, A. Katz, M. Strassler and R. Sundrum, Naturalness in the Dark at the LHC, JHEP 07 (2015) 105 [arXiv:1501.05310] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, The Composite Twin Higgs scenario, JHEP 08 (2015) 161 [arXiv:1501.07803] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Low, A. Tesi and L.-T. Wang, Twin Higgs mechanism and a composite Higgs boson, Phys. Rev. D 91 (2015) 095012 [arXiv:1501.07890] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D. Buttazzo, F. Sala and A. Tesi, Singlet-like Higgs bosons at present and future colliders, JHEP 11 (2015) 158 [arXiv:1505.05488] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Curtin and C.B. Verhaaren, Discovering Uncolored Naturalness in Exotic Higgs Decays, JHEP 12 (2015) 072 [arXiv:1506.06141] [INSPIRE].ADSGoogle Scholar
  30. [30]
    T. Cohen, N. Craig, H.K. Lou and D. Pinner, Folded Supersymmetry with a Twist, JHEP 03 (2016) 196 [arXiv:1508.05396] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H. Beauchesne, K. Earl and T. Grégoire, The spontaneous2 breaking Twin Higgs, JHEP 01 (2016) 130 [arXiv:1510.06069] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y. Bai, R. Lu, S. Lu, J. Salvado and B.A. Stefanek, Three Twin Neutrinos: Evidence from LSND and MiniBooNE, Phys. Rev. D 93 (2016) 073004 [arXiv:1512.05357] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Z. Chacko, D. Curtin and C.B. Verhaaren, A Quirky Probe of Neutral Naturalness, Phys. Rev. D 94 (2016) 011504 [arXiv:1512.05782] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.-H. Yu, Radiative-2 -breaking twin Higgs model, Phys. Rev. D 94 (2016) 111704 [arXiv:1608.01314] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J.-H. Yu, A tale of twin Higgs: natural twin two Higgs doublet models, JHEP 12 (2016) 143 [arXiv:1608.05713] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Barbieri, L.J. Hall and K. Harigaya, Minimal Mirror Twin Higgs, JHEP 11 (2016) 172 [arXiv:1609.05589] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Katz, A. Mariotti, S. Pokorski, D. Redigolo and R. Ziegler, SUSY Meets Her Twin, JHEP 01 (2017) 142 [arXiv:1611.08615] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    H.-C. Cheng, E. Salvioni and Y. Tsai, Exotic electroweak signals in the twin Higgs model, Phys. Rev. D 95 (2017) 115035 [arXiv:1612.03176] [INSPIRE].ADSGoogle Scholar
  39. [39]
    R. Contino, D. Greco, R. Mahbubani, R. Rattazzi and R. Torre, Precision Tests and Fine Tuning in Twin Higgs Models, Phys. Rev. D 96 (2017) 095036 [arXiv:1702.00797] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Badziak and K. Harigaya, Supersymmetric D-term Twin Higgs, JHEP 06 (2017) 065 [arXiv:1703.02122] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Thrasher, Signatures of an S 3 -Orbifold Higgs Model, arXiv:1705.01472 [INSPIRE].
  42. [42]
    M. Badziak and K. Harigaya, Minimal Non-Abelian Supersymmetric Twin Higgs, JHEP 10 (2017) 109 [arXiv:1707.09071] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Serra and R. Torre, Neutral naturalness from the brother-Higgs model, Phys. Rev. D 97 (2018) 035017 [arXiv:1709.05399] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Ahmed, Heavy Higgs of the Twin Higgs Models, JHEP 02 (2018) 048 [arXiv:1711.03107] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Z. Chacko, C. Kilic, S. Najjari and C.B. Verhaaren, Testing the Scalar Sector of the Twin Higgs Model at Colliders, Phys. Rev. D 97 (2018) 055031 [arXiv:1711.05300] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Badziak and K. Harigaya, Asymptotically Free Natural SUSY Twin Higgs, arXiv:1711.11040 [INSPIRE].
  47. [47]
    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    J. Scherk and J.H. Schwarz, Spontaneous Breaking of Supersymmetry Through Dimensional Reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quirós, Soft masses in theories with supersymmetry breaking by TeV compactification, Nucl. Phys. B 544 (1999) 503 [hep-ph/9810410] [INSPIRE].
  50. [50]
    A. Delgado, A. Pomarol and M. Quirós, Supersymmetry and electroweak breaking from extra dimensions at the TeV scale, Phys. Rev. D 60 (1999) 095008 [hep-ph/9812489] [INSPIRE].
  51. [51]
    N. Arkani-Hamed, L.J. Hall, Y. Nomura, D. Tucker-Smith and N. Weiner, Finite radiative electroweak symmetry breaking from the bulk, Nucl. Phys. B 605 (2001) 81 [hep-ph/0102090] [INSPIRE].
  52. [52]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  53. [53]
    R. Davies, J. March-Russell and M. McCullough, A Supersymmetric One Higgs Doublet Model, JHEP 04 (2011) 108 [arXiv:1103.1647] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    S. Dimopoulos, K. Howe and J. March-Russell, Maximally Natural Supersymmetry, Phys. Rev. Lett. 113 (2014) 111802 [arXiv:1404.7554] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Dimopoulos, K. Howe, J. March-Russell and J. Scoville, Auto-Concealment of Supersymmetry in Extra Dimensions, JHEP 06 (2015) 041 [arXiv:1412.0805] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    I. Garcia Garcia, K. Howe and J. March-Russell, Natural Scherk-Schwarz Theories of the Weak Scale, JHEP 12 (2015) 005 [arXiv:1510.07045] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    P. Batra, A. Delgado, D.E. Kaplan and T.M.P. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].
  58. [58]
    A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].
  59. [59]
    C. Cheung and H.L. Roberts, Higgs Mass from D-terms: a Litmus Test, JHEP 12 (2013) 018 [arXiv:1207.0234] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  61. [61]
    K. Intriligator and M. Sudano, General Gauge Mediation with Gauge Messengers, JHEP 06 (2010) 047 [arXiv:1001.5443] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  64. [64]
    D. Latham and M. Jaffe, I’m My Own Grandpaw, RCA Records (1947).Google Scholar
  65. [65]
    H.-C. Cheng, L. Li, E. Salvioni and C.B. Verhaaren, Singlet Scalar Top Partners from Accidental Supersymmetry, to appear (2018).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Timothy Cohen
    • 1
  • Nathaniel Craig
    • 2
  • Gian F. Giudice
    • 3
  • Matthew McCullough
    • 3
  1. 1.Institute of Theoretical ScienceUniversity of OregonEugeneU.S.A.
  2. 2.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  3. 3.Theoretical Physics DepartmentCERNGenevaSwitzerland

Personalised recommendations