Probing 6D operators at future ee+ colliders

  • Wen Han Chiu
  • Sze Ching Leung
  • Tao Liu
  • Kun-Feng Lyu
  • Lian-Tao Wang
Open Access
Regular Article - Theoretical Physics


We explore the sensitivities at future ee+ colliders to probe a set of six-dimensional operators which can modify the SM predictions on Higgs physics and electroweak precision measurements. We consider the case in which the operators are turned on simultaneously. Such an analysis yields a “conservative” interpretation on the collider sensitivities, complementary to the “optimistic” scenario where the operators are individually probed. After a detail analysis at CEPC in both “conservative” and “optimistic” scenarios, we also considered the sensitivities for FCC-ee and ILC. As an illustration of the potential of constraining new physics models, we applied sensitivity analysis to two benchmarks: holographic composite Higgs model and littlest Higgs model.


Beyond Standard Model Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    LHC/LC Study Group collaboration, G. Weiglein et al., Physics interplay of the LHC and the ILC, Phys. Rept. 426 (2006) 47 [hep-ph/0410364] [INSPIRE].
  4. [4]
    H. Baer et al., The International Linear Collider technical design report — Volume 2: physics, arXiv:1306.6352 [INSPIRE].
  5. [5]
    D.M. Asner et al., ILC Higgs white paper, in the proceedings of the 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), July 29–August 6, Minneapolis, U.S.A. (2013), arXiv:1310.0763 [INSPIRE].
  6. [6]
    CEPC-SPPC collaboration, M. Ahmad et al., CEPC-SPPC preliminary conceptual design report. 1. Physics and detector (2015).Google Scholar
  7. [7]
    TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  8. [8]
    K. Hagiwara et al., Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].ADSGoogle Scholar
  9. [9]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  11. [11]
    J. Elias-Miro, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP 05 (2014) 019 [arXiv:1312.2928] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. Henning, X. Lu and H. Murayama, How to use the standard model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Craig, M. Farina, M. McCullough and M. Perelstein, Precision Higgsstrahlung as a probe of new physics, JHEP 03 (2015) 146 [arXiv:1411.0676] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Corbett et al., The Higgs legacy of the LHC run I, JHEP 08 (2015) 156 [arXiv:1505.05516] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Ellis and T. You, Sensitivities of prospective future e + e colliders to decoupled new physics, JHEP 03 (2016) 089 [arXiv:1510.04561] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new physics scales from Higgs and electroweak observables at e + e Higgs factory, JHEP 10 (2016) 007 [arXiv:1603.03385] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Ellis, Prospects for future collider physics Int. J. Mod. Phys. A 31 (2016) 1644002 [arXiv:1604.00333] [INSPIRE].
  21. [21]
    G. Durieux, C. Grojean, J. Gu and K. Wang, The leptonic future of the Higgs, JHEP 09 (2017) 014 [arXiv:1704.02333] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y. Jiang and M. Trott, On the non-minimal character of the SMEFT, Phys. Lett. B 770 (2017) 108 [arXiv:1612.02040] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Amar et al., Exploration of the tensor structure of the Higgs boson coupling to weak bosons in e + e collisions, JHEP 02 (2015) 128 [arXiv:1405.3957] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Jana and S. Nandi, New physics scale from Higgs observables with effective dimension-6 operators, arXiv:1710.00619 [INSPIRE].
  25. [25]
    T. Barklow et al., Improved formalism for precision Higgs coupling fits, Phys. Rev. D 97 (2018) 053003 [arXiv:1708.08912] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Barklow et al., Model-independent determination of the triple Higgs coupling at e + e colliders, Phys. Rev. D 97 (2018) 053004 [arXiv:1708.09079] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Gu, H. Li, Z. Liu, S. Su and W. Su, Learning from Higgs physics at future Higgs factories, JHEP 12 (2017) 153 [arXiv:1709.06103] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M.L. Mangano, CERN roadmap and FCC, talk given at International Workshop on High Energy Circular Electron Positron Collider IHEP , November 8–10, Beijing, China (2017).Google Scholar
  29. [29]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  30. [30]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  31. [31]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].
  32. [32]
    M. Beneke, D. Boito and Y.-M. Wang, Anomalous Higgs couplings in angular asymmetries of HZℓ + and e + e HZ, JHEP 11 (2014) 028 [arXiv:1406.1361] [INSPIRE].
  33. [33]
    N. Craig, J. Gu, Z. Liu and K. Wang, Beyond Higgs couplings: probing the higgs with angular observables at future e + e colliders, JHEP 03 (2016) 050 [arXiv:1512.06877] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  35. [35]
    D. d’Enterria, Physics at the FCC-ee, the proceedings of the 17th Lomonosov Conference on Elementary Particle Physics, August 20–26, Moscow, Russia (2017), arXiv:1602.05043 [INSPIRE].
  36. [36]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  37. [37]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001.Google Scholar
  38. [38]
    ATLAS, CDF, CMS, D0 collaboration, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
  39. [39]
    J. Fan, M. Reece and L.-T. Wang, Possible futures of electroweak precision: ILC, FCC-ee and CEPC, JHEP 09 (2015) 196 [arXiv:1411.1054] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    DELPHI, OPAL, LEP Electroweak, ALEPH, L3 collaboration, S. Schael et al., Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
  41. [41]
    M. Dam, Precision electroweak measurements at the FCC-ee, arXiv:1601.03849 [INSPIRE].
  42. [42]
    M. Baak et al., Working group report: precision study of electroweak interactions, in the proceedings of the 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), July 29–August 6, Minneapolis, U.S.A. (2013), arXiv:1310.6708 [INSPIRE].
  43. [43]
    A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  44. [44]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  45. [45]
    J. Alwall et al., MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].ADSGoogle Scholar
  47. [47]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A.J. Barr et al., Higgs self-coupling measurements at a 100 TeV hadron collider, JHEP 02 (2015) 016 [arXiv:1412.7154] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    H.-J. He, J. Ren and W. Yao, Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders, Phys. Rev. D 93 (2016) 015003 [arXiv:1506.03302] [INSPIRE].ADSGoogle Scholar
  51. [51]
    G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC, JHEP 12 (2016) 080 [arXiv:1607.04251] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    L. Di Luzio, R. Gröber and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how large could it be?, Eur. Phys. J. C 77 (2017) 788 [arXiv:1704.02311] [INSPIRE].ADSGoogle Scholar
  53. [53]
    V. Sanz and J. Setford, Composite Higgs models after Run 2, Adv. High Energy Phys. 2018 (2018) 7168480 [arXiv:1703.10190] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  54. [54]
    A. Banerjee, G. Bhattacharyya, N. Kumar and T.S. Ray, Constraining composite Higgs models using LHC data, JHEP 03 (2018) 062 [arXiv:1712.07494] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    ATLAS collaboration, Search for new phenomena in \( t\overline{t} \) final states with additional heavy-flavour jets in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-104 (2016).Google Scholar
  56. [56]
    ATLAS collaboration, Search for pair production of vector-like top quarks in events with one lepton and an invisibly decaying Z boson in \( \sqrt{s}=13 \) TeV pp collisions at the ATLAS detector, ATLAS-CONF-2017-015 (2017).Google Scholar
  57. [57]
    CMS collaboration, Search for pair production of vector-like quarks in the \( bW\overline{b}W \) channel from proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 779 (2018) 82 [arXiv:1710.01539] [INSPIRE].
  58. [58]
    CMS collaboration, Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 11 (2017) 085 [arXiv:1706.03408] [INSPIRE].
  59. [59]

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Wen Han Chiu
    • 1
    • 2
  • Sze Ching Leung
    • 1
    • 4
  • Tao Liu
    • 1
  • Kun-Feng Lyu
    • 1
  • Lian-Tao Wang
    • 2
    • 3
  1. 1.Department of PhysicsThe Hong Kong University of Science and TechnologyHong KongChina
  2. 2.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.
  3. 3.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoU.S.A.
  4. 4.Department of Physics and AstronomyUniversity of PittsburghPittsburghU.S.A.

Personalised recommendations