Spectral weight and spatially modulated instabilities in holographic superfluids

Open Access
Regular Article - Theoretical Physics


Free fermions form a Fermi surface, which results in non-zero spectral weight at low energy and finite wavevector k F . In this work, we find similar features in holographic phases dual to strongly coupled quantum superfluid matter. At zero temperature, the phases we consider exhibit semi-local criticality in the IR and all the charge is carried by the scalar condensate outside the black hole horizon. Depending on the value taken by the IR critical exponents, we find Fermi surfaces in the transverse sector, Fermi shells in the longitudinal sector or no spectral weight at all. When there is non-zero transverse spectral weight, the IR can be subject to an instability at finite wavevector, the endpoint of which is likely a spatially modulated phase.


Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams and A.E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett. 63 (1989) 1996 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A.J. Schofield, Non-fermi liquids, Contemp. Phy. 40 (1999) 95.ADSCrossRefGoogle Scholar
  3. [3]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    R.J. Anantua, S.A. Hartnoll, V.L. Martin and D.M. Ramirez, The Pauli exclusion principle at strong coupling: holographic matter and momentum space, JHEP 03 (2013) 104 [arXiv:1210.1590] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  14. [14]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].ADSGoogle Scholar
  15. [15]
    G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Goutéraux, Universal scaling properties of extremal cohesive holographic phases, JHEP 01 (2014) 080 [arXiv:1308.2084] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Iizuka et al., Extremal horizons with reduced symmetry: hyperscaling violation, stripes and a classification for the homogeneous case, JHEP 03 (2013) 126 [arXiv:1212.1948] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic models for theories with hyperscaling violation, JHEP 04 (2013) 159 [arXiv:1212.3263] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Minimal holographic superconductors from maximal supergravity, JHEP 03 (2012) 064 [arXiv:1110.3454] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    O. DeWolfe, S.S. Gubser, O. Henriksson and C. Rosen, Fermionic response in finite-density ABJM theory with broken symmetry, Phys. Rev. D 93 (2016) 026001 [arXiv:1509.00518] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    O. DeWolfe, S.S. Gubser, O. Henriksson and C. Rosen, Gapped fermions in top-down holographic superconductors, Phys. Rev. D 95 (2017) 086005 [arXiv:1609.07186] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014) 181 [arXiv:1401.5436] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Karch, Conductivities for hyperscaling violating geometries, JHEP 06 (2014) 140 [arXiv:1405.2926] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    X.G. Wen, Scaling theory of conserved current and universal amplitudes at anisotropic critical points, Phys. Rev. 46 (1992) 2655.ADSCrossRefGoogle Scholar
  29. [29]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905].ADSCrossRefGoogle Scholar
  30. [30]
    H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29 [hep-th/0308128] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    A. Donos and S.A. Hartnoll, Universal linear in temperature resistivity from black hole superradiance, Phys. Rev. D 86 (2012) 124046 [arXiv:1208.4102] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012) 211601 [arXiv:1203.0533] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Competing p-wave orders, Class. Quant. Grav. 31 (2014) 055007 [arXiv:1310.5741] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    A. Krikun, Charge density wave instability in holographic d-wave superconductor, JHEP 04 (2014) 135 [arXiv:1312.1588] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Erdmenger, X.-H. Ge and D.-W. Pang, Striped phases in the holographic insulator/superconductor transition, JHEP 11 (2013) 027 [arXiv:1307.4609] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Krikun, Phases of holographic d-wave superconductor, JHEP 10 (2015) 123 [arXiv:1506.05379] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Cremonini, L. Li and J. Ren, Holographic pair and charge density waves, Phys. Rev. D 95 (2017) 041901 [arXiv:1612.04385] [INSPIRE].ADSGoogle Scholar
  40. [40]
    O. DeWolfe, S.S. Gubser and C. Rosen, Fermi surfaces in N = 4 super-Yang-Mills theory, Phys. Rev. D 86 (2012) 106002 [arXiv:1207.3352] [INSPIRE].ADSGoogle Scholar
  41. [41]
    O. DeWolfe, O. Henriksson and C. Rosen, Fermi surface behavior in the ABJM M2-brane theory, Phys. Rev. D 91 (2015) 126017 [arXiv:1410.6986] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau model in AdS/CFT, Phys. Rev. D 82 (2010) 026001 [arXiv:1004.2707] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Blake, A. Donos and D. Tong, Holographic charge oscillations, JHEP 04 (2015) 019 [arXiv:1412.2003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    O. Henriksson and C. Rosen, 1k F ” singularities and finite density ABJM theory at strong coupling, arXiv:1612.06823 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  2. 2.Stanford Institute for Theoretical Physics, Department of PhysicsStanford UniversityStanfordU.S.A.
  3. 3.APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris (UMR du CNRS 7164)Paris Cedex 13France

Personalised recommendations