Trilinear-augmented gaugino mediation

  • Jan Heisig
  • Jörn Kersten
  • Nick Murphy
  • Inga Strümke
Open Access
Regular Article - Theoretical Physics
  • 58 Downloads

Abstract

We consider a gaugino-mediated supersymmetry breaking scenario where in addition to the gauginos the Higgs fields couple directly to the field that breaks supersymmetry. This yields non-vanishing trilinear scalar couplings in general, which can lead to large mixing in the stop sector providing a sufficiently large Higgs mass. Using the most recent release of FeynHiggs, we show the implications on the parameter space. Assuming a gravitino LSP, we find allowed points with a neutralino, sneutrino or stau NLSP. We test these points against the results of Run 1 of the LHC, considering in particular searches for heavy stable charged particles.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [INSPIRE].
  2. [2]
    Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [INSPIRE].
  3. [3]
    ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  4. [4]
    R. Kitano, R. Motono and M. Nagai, MSSM without free parameters, Phys. Rev. D 94 (2016) 115016 [arXiv:1605.08227] [INSPIRE].ADSGoogle Scholar
  5. [5]
    F. Brummer, S. Kraml and S. Kulkarni, Anatomy of maximal stop mixing in the MSSM, JHEP 08 (2012) 089 [arXiv:1204.5977] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    W. Buchmüller, K. Hamaguchi and J. Kersten, The gravitino in gaugino mediation, Phys. Lett. B 632 (2006) 366 [hep-ph/0506105] [INSPIRE].
  7. [7]
    H. Pagels and J.R. Primack, Supersymmetry, cosmology and new TeV physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    W. Buchmüller, J. Kersten and K. Schmidt-Hoberg, Squarks and sleptons between branes and bulk, JHEP 02 (2006) 069 [hep-ph/0512152] [INSPIRE].
  9. [9]
    Z. Chacko, M.A. Luty and E. Ponton, Massive higher dimensional gauge fields as messengers of supersymmetry breaking, JHEP 07 (2000) 036 [hep-ph/9909248] [INSPIRE].
  10. [10]
    A. Brignole, L.E. Ibáñez and C. Muñoz, Soft supersymmetry breaking terms from supergravity and superstring models, Adv. Ser. Direct. High Energy Phys. 18 (1998) 125 [hep-ph/9707209] [INSPIRE].
  11. [11]
    S.P. Martin, A Supersymmetry primer, World Scientific, Singapore (2011), hep-ph/9709356 [INSPIRE].
  12. [12]
    D. Matalliotakis and H.P. Nilles, Implications of nonuniversality of soft terms in supersymmetric grand unified theories, Nucl. Phys. B 435 (1995) 115 [hep-ph/9407251] [INSPIRE].
  13. [13]
    J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with nonuniversal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [INSPIRE].
  14. [14]
    O. Buchmueller et al., The NUHM2 after LHC Run 1, Eur. Phys. J. C 74 (2014) 3212 [arXiv:1408.4060] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, Momentum-dependent two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, Eur. Phys. J. C 74 (2014) 2994 [arXiv:1404.7074] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  18. [18]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573].ADSCrossRefGoogle Scholar
  19. [19]
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].
  20. [20]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].
  21. [21]
    S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].
  22. [22]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320].
  23. [23]
    H. Bahl and W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations, Eur. Phys. J. C 76 (2016) 499 [arXiv:1608.01880] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Athron, J.-h. Park, T. Steudtner, D. Stöckinger and A. Voigt, Precise Higgs mass calculations in (non-)minimal supersymmetry at both high and low scales, JHEP 01 (2017) 079 [arXiv:1609.00371] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  26. [26]
    M. Carena et al., Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP-even Higgs boson in the MSSM, Nucl. Phys. B 580 (2000) 29 [hep-ph/0001002] [INSPIRE].
  27. [27]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  28. [28]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    CMS collaboration, Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 325 [arXiv:1502.02522] [INSPIRE].
  30. [30]
    J. Heisig, A. Lessa and L. Quertenmont, Simplified models for exotic BSM searches, JHEP 12 (2015) 087 [arXiv:1509.00473] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    CMS collaboration, Search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 94 (2016) 112004 [arXiv:1609.08382] [INSPIRE].
  32. [32]
    CMS collaboration, Search for heavy stable charged particles with 12.9 fb−1 of 2016 data, CMS-PAS-EXO-16-036 (2016).
  33. [33]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: confronting your favourite new physics model with LHC data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  35. [35]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  37. [37]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    ATLAS collaboration, Search for direct top-squark pair production in final states with two leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 06 (2014) 124 [arXiv:1403.4853] [INSPIRE].
  39. [39]
    ATLAS collaboration, Search for strongly produced supersymmetric particles in decays with two leptons at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-089 (2013).
  40. [40]
    ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-049 (2013).
  41. [41]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013).
  42. [42]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-035 (2013).
  43. [43]
    ATLAS collaboration, Search for direct production of the top squark in the all-hadronic \( t{\overline{t}}^{+} \) Etmiss final state in 21 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-024 (2013).
  44. [44]
    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).
  45. [45]
    ATLAS collaboration, Search for supersymmetry at \( \sqrt{s}=8 \) TeV in final states with jets, missing transverse momentum and one isolated lepton, ATLAS-CONF-2012-104 (2012).
  46. [46]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].
  47. [47]
    ATLAS collaboration, ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C 75 (2015) 510 [arXiv:1506.08616] [INSPIRE].
  48. [48]
    ATLAS collaboration, Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012008 [arXiv:1411.1559] [INSPIRE].
  49. [49]
    ATLAS collaboration, Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052008 [arXiv:1407.0608] [INSPIRE].
  50. [50]
    ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].
  51. [51]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  52. [52]
    ATLAS collaboration, Search for supersymmetry at \( \sqrt{s}=8 \) TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector, JHEP 06 (2014) 035 [arXiv:1404.2500] [INSPIRE].
  53. [53]
    ATLAS collaboration, Search for direct top squark pair production in events with a Z boson, b-jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 74 (2014) 2883 [arXiv:1403.5222] [INSPIRE].
  54. [54]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].
  55. [55]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].
  56. [56]
    ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS experiment, JHEP 10 (2013) 130 [Erratum ibid. 01 (2014) 109] [arXiv:1308.1841] [INSPIRE].
  57. [57]
    ATLAS collaboration, Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets and large missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 318 [arXiv:1503.03290] [INSPIRE].
  58. [58]
    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, ATLAS-CONF-2013-061 (2013).
  59. [59]
    C. Kounnas, A.B. Lahanas, D.V. Nanopoulos and M. Quirós, Low-energy behavior of realistic locally supersymmetric grand unified theories, Nucl. Phys. B 236 (1984) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J.P. Derendinger and C.A. Savoy, Quantum effects and SU(2) × U(1) breaking in supergravity gauge theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].
  63. [63]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of stau’s, Phys. Lett. B 696 (2011) 92 [Erratum ibid. B 719 (2013) 472] [arXiv:1011.0260] [INSPIRE].
  64. [64]
    M. Carena, S. Gori, I. Low, N.R. Shah and C.E.M. Wagner, Vacuum stability and higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  65. [65]
    T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Stability of the CMSSM against sfermion VEVs, JHEP 12 (2013) 103 [arXiv:1309.7212] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and color breaking constraints in MSSM after the Higgs discovery at LHC, JHEP 02 (2014) 110 [arXiv:1310.1932] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars, Eur. Phys. J. C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Pospelov, Particle physics catalysis of thermal Big Bang nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [INSPIRE].
  71. [71]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  72. [72]
    J. Kersten and K. Schmidt-Hoberg, The gravitino-stau scenario after catalyzed BBN, JCAP 01 (2008) 011 [arXiv:0710.4528] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Jan Heisig
    • 1
  • Jörn Kersten
    • 2
  • Nick Murphy
    • 3
  • Inga Strümke
    • 2
  1. 1.Institute for Theoretical Particle Physics and CosmologyRWTH Aachen UniversityAachenGermany
  2. 2.Department of Physics and TechnologyUniversity of BergenBergenNorway
  3. 3.CP3-OriginsUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations